GeographicLib 2.3
EllipticFunction.cpp
Go to the documentation of this file.
1/**
2 * \file EllipticFunction.cpp
3 * \brief Implementation for GeographicLib::EllipticFunction class
4 *
5 * Copyright (c) Charles Karney (2008-2023) <karney@alum.mit.edu> and licensed
6 * under the MIT/X11 License. For more information, see
7 * https://geographiclib.sourceforge.io/
8 **********************************************************************/
9
11
12#if defined(_MSC_VER)
13// Squelch warnings about constant conditional and enum-float expressions
14# pragma warning (disable: 4127 5055)
15#endif
16
17namespace GeographicLib {
18
19 using namespace std;
20
21 /*
22 * Implementation of methods given in
23 *
24 * B. C. Carlson
25 * Computation of elliptic integrals
26 * Numerical Algorithms 10, 13-26 (1995)
27 */
28
29 Math::real EllipticFunction::RF(real x, real y, real z) {
30 // Carlson, eqs 2.2 - 2.7
31 static const real tolRF =
32 pow(3 * numeric_limits<real>::epsilon() * real(0.01), 1/real(8));
33 real
34 A0 = (x + y + z)/3,
35 An = A0,
36 Q = fmax(fmax(fabs(A0-x), fabs(A0-y)), fabs(A0-z)) / tolRF,
37 x0 = x,
38 y0 = y,
39 z0 = z,
40 mul = 1;
41 while (Q >= mul * fabs(An)) {
42 // Max 6 trips
43 real lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0);
44 An = (An + lam)/4;
45 x0 = (x0 + lam)/4;
46 y0 = (y0 + lam)/4;
47 z0 = (z0 + lam)/4;
48 mul *= 4;
49 }
50 real
51 X = (A0 - x) / (mul * An),
52 Y = (A0 - y) / (mul * An),
53 Z = - (X + Y),
54 E2 = X*Y - Z*Z,
55 E3 = X*Y*Z;
56 // https://dlmf.nist.gov/19.36.E1
57 // Polynomial is
58 // (1 - E2/10 + E3/14 + E2^2/24 - 3*E2*E3/44
59 // - 5*E2^3/208 + 3*E3^2/104 + E2^2*E3/16)
60 // convert to Horner form...
61 return (E3 * (6930 * E3 + E2 * (15015 * E2 - 16380) + 17160) +
62 E2 * ((10010 - 5775 * E2) * E2 - 24024) + 240240) /
63 (240240 * sqrt(An));
64 }
65
67 // Carlson, eqs 2.36 - 2.38
68 static const real tolRG0 =
69 real(2.7) * sqrt((numeric_limits<real>::epsilon() * real(0.01)));
70 real xn = sqrt(x), yn = sqrt(y);
71 if (xn < yn) swap(xn, yn);
72 while (fabs(xn-yn) > tolRG0 * xn) {
73 // Max 4 trips
74 real t = (xn + yn) /2;
75 yn = sqrt(xn * yn);
76 xn = t;
77 }
78 return Math::pi() / (xn + yn);
79 }
80
82 // Defined only for y != 0 and x >= 0.
83 return ( !(x >= y) ? // x < y and catch nans
84 // https://dlmf.nist.gov/19.2.E18
85 atan(sqrt((y - x) / x)) / sqrt(y - x) :
86 ( x == y ? 1 / sqrt(y) :
87 asinh( y > 0 ?
88 // https://dlmf.nist.gov/19.2.E19
89 // atanh(sqrt((x - y) / x))
90 sqrt((x - y) / y) :
91 // https://dlmf.nist.gov/19.2.E20
92 // atanh(sqrt(x / (x - y)))
93 sqrt(-x / y) ) / sqrt(x - y) ) );
94 }
95
96 Math::real EllipticFunction::RG(real x, real y, real z) {
97 return (x == 0 ? RG(y, z) :
98 (y == 0 ? RG(z, x) :
99 (z == 0 ? RG(x, y) :
100 // Carlson, eq 1.7
101 (z * RF(x, y, z) - (x-z) * (y-z) * RD(x, y, z) / 3
102 + sqrt(x * y / z)) / 2 )));
103 }
104
106 // Carlson, eqs 2.36 - 2.39
107 static const real tolRG0 =
108 real(2.7) * sqrt((numeric_limits<real>::epsilon() * real(0.01)));
109 real
110 x0 = sqrt(fmax(x, y)),
111 y0 = sqrt(fmin(x, y)),
112 xn = x0,
113 yn = y0,
114 s = 0,
115 mul = real(0.25);
116 while (fabs(xn-yn) > tolRG0 * xn) {
117 // Max 4 trips
118 real t = (xn + yn) /2;
119 yn = sqrt(xn * yn);
120 xn = t;
121 mul *= 2;
122 t = xn - yn;
123 s += mul * t * t;
124 }
125 return (Math::sq( (x0 + y0)/2 ) - s) * Math::pi() / (2 * (xn + yn));
126 }
127
128 Math::real EllipticFunction::RJ(real x, real y, real z, real p) {
129 // Carlson, eqs 2.17 - 2.25
130 static const real
131 tolRD = pow(real(0.2) * (numeric_limits<real>::epsilon() * real(0.01)),
132 1/real(8));
133 real
134 A0 = (x + y + z + 2*p)/5,
135 An = A0,
136 delta = (p-x) * (p-y) * (p-z),
137 Q = fmax(fmax(fabs(A0-x), fabs(A0-y)),
138 fmax(fabs(A0-z), fabs(A0-p))) / tolRD,
139 x0 = x,
140 y0 = y,
141 z0 = z,
142 p0 = p,
143 mul = 1,
144 mul3 = 1,
145 s = 0;
146 while (Q >= mul * fabs(An)) {
147 // Max 7 trips
148 real
149 lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0),
150 d0 = (sqrt(p0)+sqrt(x0)) * (sqrt(p0)+sqrt(y0)) * (sqrt(p0)+sqrt(z0)),
151 e0 = delta/(mul3 * Math::sq(d0));
152 s += RC(1, 1 + e0)/(mul * d0);
153 An = (An + lam)/4;
154 x0 = (x0 + lam)/4;
155 y0 = (y0 + lam)/4;
156 z0 = (z0 + lam)/4;
157 p0 = (p0 + lam)/4;
158 mul *= 4;
159 mul3 *= 64;
160 }
161 real
162 X = (A0 - x) / (mul * An),
163 Y = (A0 - y) / (mul * An),
164 Z = (A0 - z) / (mul * An),
165 P = -(X + Y + Z) / 2,
166 E2 = X*Y + X*Z + Y*Z - 3*P*P,
167 E3 = X*Y*Z + 2*P * (E2 + 2*P*P),
168 E4 = (2*X*Y*Z + P * (E2 + 3*P*P)) * P,
169 E5 = X*Y*Z*P*P;
170 // https://dlmf.nist.gov/19.36.E2
171 // Polynomial is
172 // (1 - 3*E2/14 + E3/6 + 9*E2^2/88 - 3*E4/22 - 9*E2*E3/52 + 3*E5/26
173 // - E2^3/16 + 3*E3^2/40 + 3*E2*E4/20 + 45*E2^2*E3/272
174 // - 9*(E3*E4+E2*E5)/68)
175 return ((471240 - 540540 * E2) * E5 +
176 (612612 * E2 - 540540 * E3 - 556920) * E4 +
177 E3 * (306306 * E3 + E2 * (675675 * E2 - 706860) + 680680) +
178 E2 * ((417690 - 255255 * E2) * E2 - 875160) + 4084080) /
179 (4084080 * mul * An * sqrt(An)) + 6 * s;
180 }
181
182 Math::real EllipticFunction::RD(real x, real y, real z) {
183 // Carlson, eqs 2.28 - 2.34
184 static const real
185 tolRD = pow(real(0.2) * (numeric_limits<real>::epsilon() * real(0.01)),
186 1/real(8));
187 real
188 A0 = (x + y + 3*z)/5,
189 An = A0,
190 Q = fmax(fmax(fabs(A0-x), fabs(A0-y)), fabs(A0-z)) / tolRD,
191 x0 = x,
192 y0 = y,
193 z0 = z,
194 mul = 1,
195 s = 0;
196 while (Q >= mul * fabs(An)) {
197 // Max 7 trips
198 real lam = sqrt(x0)*sqrt(y0) + sqrt(y0)*sqrt(z0) + sqrt(z0)*sqrt(x0);
199 s += 1/(mul * sqrt(z0) * (z0 + lam));
200 An = (An + lam)/4;
201 x0 = (x0 + lam)/4;
202 y0 = (y0 + lam)/4;
203 z0 = (z0 + lam)/4;
204 mul *= 4;
205 }
206 real
207 X = (A0 - x) / (mul * An),
208 Y = (A0 - y) / (mul * An),
209 Z = -(X + Y) / 3,
210 E2 = X*Y - 6*Z*Z,
211 E3 = (3*X*Y - 8*Z*Z)*Z,
212 E4 = 3 * (X*Y - Z*Z) * Z*Z,
213 E5 = X*Y*Z*Z*Z;
214 // https://dlmf.nist.gov/19.36.E2
215 // Polynomial is
216 // (1 - 3*E2/14 + E3/6 + 9*E2^2/88 - 3*E4/22 - 9*E2*E3/52 + 3*E5/26
217 // - E2^3/16 + 3*E3^2/40 + 3*E2*E4/20 + 45*E2^2*E3/272
218 // - 9*(E3*E4+E2*E5)/68)
219 return ((471240 - 540540 * E2) * E5 +
220 (612612 * E2 - 540540 * E3 - 556920) * E4 +
221 E3 * (306306 * E3 + E2 * (675675 * E2 - 706860) + 680680) +
222 E2 * ((417690 - 255255 * E2) * E2 - 875160) + 4084080) /
223 (4084080 * mul * An * sqrt(An)) + 3 * s;
224 }
225
226 void EllipticFunction::Reset(real k2, real alpha2,
227 real kp2, real alphap2) {
228 // Accept nans here (needed for GeodesicExact)
229 if (k2 > 1)
230 throw GeographicErr("Parameter k2 is not in (-inf, 1]");
231 if (alpha2 > 1)
232 throw GeographicErr("Parameter alpha2 is not in (-inf, 1]");
233 if (kp2 < 0)
234 throw GeographicErr("Parameter kp2 is not in [0, inf)");
235 if (alphap2 < 0)
236 throw GeographicErr("Parameter alphap2 is not in [0, inf)");
237 _k2 = k2;
238 _kp2 = kp2;
239 _alpha2 = alpha2;
240 _alphap2 = alphap2;
241 _eps = _k2/Math::sq(sqrt(_kp2) + 1);
242 // Values of complete elliptic integrals for k = 0,1 and alpha = 0,1
243 // K E D
244 // k = 0: pi/2 pi/2 pi/4
245 // k = 1: inf 1 inf
246 // Pi G H
247 // k = 0, alpha = 0: pi/2 pi/2 pi/4
248 // k = 1, alpha = 0: inf 1 1
249 // k = 0, alpha = 1: inf inf pi/2
250 // k = 1, alpha = 1: inf inf inf
251 //
252 // Pi(0, k) = K(k)
253 // G(0, k) = E(k)
254 // H(0, k) = K(k) - D(k)
255 // Pi(0, k) = K(k)
256 // G(0, k) = E(k)
257 // H(0, k) = K(k) - D(k)
258 // Pi(alpha2, 0) = pi/(2*sqrt(1-alpha2))
259 // G(alpha2, 0) = pi/(2*sqrt(1-alpha2))
260 // H(alpha2, 0) = pi/(2*(1 + sqrt(1-alpha2)))
261 // Pi(alpha2, 1) = inf
262 // H(1, k) = K(k)
263 // G(alpha2, 1) = H(alpha2, 1) = RC(1, alphap2)
264 if (_k2 != 0) {
265 // Complete elliptic integral K(k), Carlson eq. 4.1
266 // https://dlmf.nist.gov/19.25.E1
267 _kKc = _kp2 != 0 ? RF(_kp2, 1) : Math::infinity();
268 // Complete elliptic integral E(k), Carlson eq. 4.2
269 // https://dlmf.nist.gov/19.25.E1
270 _eEc = _kp2 != 0 ? 2 * RG(_kp2, 1) : 1;
271 // D(k) = (K(k) - E(k))/k^2, Carlson eq.4.3
272 // https://dlmf.nist.gov/19.25.E1
273 _dDc = _kp2 != 0 ? RD(0, _kp2, 1) / 3 : Math::infinity();
274 } else {
275 _kKc = _eEc = Math::pi()/2; _dDc = _kKc/2;
276 }
277 if (_alpha2 != 0) {
278 // https://dlmf.nist.gov/19.25.E2
279 real rj = (_kp2 != 0 && _alphap2 != 0) ? RJ(0, _kp2, 1, _alphap2) :
281 // Only use rc if _kp2 = 0.
282 rc = _kp2 != 0 ? 0 :
283 (_alphap2 != 0 ? RC(1, _alphap2) : Math::infinity());
284 // Pi(alpha^2, k)
285 _pPic = _kp2 != 0 ? _kKc + _alpha2 * rj / 3 : Math::infinity();
286 // G(alpha^2, k)
287 _gGc = _kp2 != 0 ? _kKc + (_alpha2 - _k2) * rj / 3 : rc;
288 // H(alpha^2, k)
289 _hHc = _kp2 != 0 ? _kKc - (_alphap2 != 0 ? _alphap2 * rj : 0) / 3 : rc;
290 } else {
291 _pPic = _kKc; _gGc = _eEc;
292 // Hc = Kc - Dc but this involves large cancellations if k2 is close to
293 // 1. So write (for alpha2 = 0)
294 // Hc = int(cos(phi)^2/sqrt(1-k2*sin(phi)^2),phi,0,pi/2)
295 // = 1/sqrt(1-k2) * int(sin(phi)^2/sqrt(1-k2/kp2*sin(phi)^2,...)
296 // = 1/kp * D(i*k/kp)
297 // and use D(k) = RD(0, kp2, 1) / 3
298 // so Hc = 1/kp * RD(0, 1/kp2, 1) / 3
299 // = kp2 * RD(0, 1, kp2) / 3
300 // using https://dlmf.nist.gov/19.20.E18
301 // Equivalently
302 // RF(x, 1) - RD(0, x, 1)/3 = x * RD(0, 1, x)/3 for x > 0
303 // For k2 = 0 and alpha2 = 0, we have
304 // Hc = int(cos(phi)^2,...) = pi/4
305 // For k2 = 1 and alpha2 = 0, we have
306 // Hc = int(cos(phi),...) = 1
307 _hHc = _kp2 == 1 ? Math::pi()/4 :
308 (_kp2 == 0 ? 1 : _kp2 * RD(0, 1, _kp2) / 3);
309 }
310 }
311
312 /*
313 * Implementation of methods given in
314 *
315 * R. Bulirsch
316 * Numerical Calculation of Elliptic Integrals and Elliptic Functions
317 * Numericshe Mathematik 7, 78-90 (1965)
318 */
319
320 void EllipticFunction::sncndn(real x, real& sn, real& cn, real& dn) const {
321 // Bulirsch's sncndn routine, p 89.
322 static const real tolJAC =
323 sqrt(numeric_limits<real>::epsilon() * real(0.01));
324 if (_kp2 != 0) {
325 real mc = _kp2, d = 0;
326 if (signbit(_kp2)) {
327 d = 1 - mc;
328 mc /= -d;
329 d = sqrt(d);
330 x *= d;
331 }
332 real c = 0; // To suppress warning about uninitialized variable
333 real m[num_], n[num_];
334 unsigned l = 0;
335 for (real a = 1; l < num_ || GEOGRAPHICLIB_PANIC; ++l) {
336 // This converges quadratically. Max 5 trips
337 m[l] = a;
338 n[l] = mc = sqrt(mc);
339 c = (a + mc) / 2;
340 if (!(fabs(a - mc) > tolJAC * a)) {
341 ++l;
342 break;
343 }
344 mc *= a;
345 a = c;
346 }
347 x *= c;
348 sn = sin(x);
349 cn = cos(x);
350 dn = 1;
351 if (sn != 0) {
352 real a = cn / sn;
353 c *= a;
354 while (l--) {
355 real b = m[l];
356 a *= c;
357 c *= dn;
358 dn = (n[l] + a) / (b + a);
359 a = c / b;
360 }
361 a = 1 / sqrt(c*c + 1);
362 sn = signbit(sn) ? -a : a;
363 cn = c * sn;
364 if (signbit(_kp2)) {
365 swap(cn, dn);
366 sn /= d;
367 }
368 }
369 } else {
370 sn = tanh(x);
371 dn = cn = 1 / cosh(x);
372 }
373 }
374
375 Math::real EllipticFunction::F(real sn, real cn, real dn) const {
376 // Carlson, eq. 4.5 and
377 // https://dlmf.nist.gov/19.25.E5
378 real cn2 = cn*cn, dn2 = dn*dn,
379 fi = cn2 != 0 ? fabs(sn) * RF(cn2, dn2, 1) : K();
380 // Enforce usual trig-like symmetries
381 if (signbit(cn))
382 fi = 2 * K() - fi;
383 return copysign(fi, sn);
384 }
385
386 Math::real EllipticFunction::E(real sn, real cn, real dn) const {
387 real
388 cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
389 ei = cn2 != 0 ?
390 fabs(sn) * ( _k2 <= 0 ?
391 // Carlson, eq. 4.6 and
392 // https://dlmf.nist.gov/19.25.E9
393 RF(cn2, dn2, 1) - _k2 * sn2 * RD(cn2, dn2, 1) / 3 :
394 ( _kp2 >= 0 ?
395 // https://dlmf.nist.gov/19.25.E10
396 _kp2 * RF(cn2, dn2, 1) +
397 _k2 * _kp2 * sn2 * RD(cn2, 1, dn2) / 3 +
398 _k2 * fabs(cn) / dn :
399 // https://dlmf.nist.gov/19.25.E11
400 - _kp2 * sn2 * RD(dn2, 1, cn2) / 3 +
401 dn / fabs(cn) ) ) :
402 E();
403 // Enforce usual trig-like symmetries
404 if (signbit(cn))
405 ei = 2 * E() - ei;
406 return copysign(ei, sn);
407 }
408
409 Math::real EllipticFunction::D(real sn, real cn, real dn) const {
410 // Carlson, eq. 4.8 and
411 // https://dlmf.nist.gov/19.25.E13
412 real
413 cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
414 di = cn2 != 0 ? fabs(sn) * sn2 * RD(cn2, dn2, 1) / 3 : D();
415 // Enforce usual trig-like symmetries
416 if (signbit(cn))
417 di = 2 * D() - di;
418 return copysign(di, sn);
419 }
420
421 Math::real EllipticFunction::Pi(real sn, real cn, real dn) const {
422 // Carlson, eq. 4.7 and
423 // https://dlmf.nist.gov/19.25.E14
424 real
425 cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
426 pii = cn2 != 0 ? fabs(sn) * (RF(cn2, dn2, 1) +
427 _alpha2 * sn2 *
428 RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
429 Pi();
430 // Enforce usual trig-like symmetries
431 if (signbit(cn))
432 pii = 2 * Pi() - pii;
433 return copysign(pii, sn);
434 }
435
436 Math::real EllipticFunction::G(real sn, real cn, real dn) const {
437 real
438 cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
439 gi = cn2 != 0 ? fabs(sn) * (RF(cn2, dn2, 1) +
440 (_alpha2 - _k2) * sn2 *
441 RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
442 G();
443 // Enforce usual trig-like symmetries
444 if (signbit(cn))
445 gi = 2 * G() - gi;
446 return copysign(gi, sn);
447 }
448
449 Math::real EllipticFunction::H(real sn, real cn, real dn) const {
450 real
451 cn2 = cn*cn, dn2 = dn*dn, sn2 = sn*sn,
452 // WARNING: large cancellation if k2 = 1, alpha2 = 0, and phi near pi/2
453 hi = cn2 != 0 ? fabs(sn) * (RF(cn2, dn2, 1) -
454 _alphap2 * sn2 *
455 RJ(cn2, dn2, 1, cn2 + _alphap2 * sn2) / 3) :
456 H();
457 // Enforce usual trig-like symmetries
458 if (signbit(cn))
459 hi = 2 * H() - hi;
460 return copysign(hi, sn);
461 }
462
463 Math::real EllipticFunction::deltaF(real sn, real cn, real dn) const {
464 // Function is periodic with period pi
465 if (signbit(cn)) { cn = -cn; sn = -sn; }
466 return F(sn, cn, dn) * (Math::pi()/2) / K() - atan2(sn, cn);
467 }
468
469 Math::real EllipticFunction::deltaE(real sn, real cn, real dn) const {
470 // Function is periodic with period pi
471 if (signbit(cn)) { cn = -cn; sn = -sn; }
472 return E(sn, cn, dn) * (Math::pi()/2) / E() - atan2(sn, cn);
473 }
474
475 Math::real EllipticFunction::deltaPi(real sn, real cn, real dn) const {
476 // Function is periodic with period pi
477 if (signbit(cn)) { cn = -cn; sn = -sn; }
478 return Pi(sn, cn, dn) * (Math::pi()/2) / Pi() - atan2(sn, cn);
479 }
480
481 Math::real EllipticFunction::deltaD(real sn, real cn, real dn) const {
482 // Function is periodic with period pi
483 if (signbit(cn)) { cn = -cn; sn = -sn; }
484 return D(sn, cn, dn) * (Math::pi()/2) / D() - atan2(sn, cn);
485 }
486
487 Math::real EllipticFunction::deltaG(real sn, real cn, real dn) const {
488 // Function is periodic with period pi
489 if (signbit(cn)) { cn = -cn; sn = -sn; }
490 return G(sn, cn, dn) * (Math::pi()/2) / G() - atan2(sn, cn);
491 }
492
493 Math::real EllipticFunction::deltaH(real sn, real cn, real dn) const {
494 // Function is periodic with period pi
495 if (signbit(cn)) { cn = -cn; sn = -sn; }
496 return H(sn, cn, dn) * (Math::pi()/2) / H() - atan2(sn, cn);
497 }
498
500 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
501 return fabs(phi) < Math::pi() ? F(sn, cn, dn) :
502 (deltaF(sn, cn, dn) + phi) * K() / (Math::pi()/2);
503 }
504
506 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
507 return fabs(phi) < Math::pi() ? E(sn, cn, dn) :
508 (deltaE(sn, cn, dn) + phi) * E() / (Math::pi()/2);
509 }
510
512 // ang - Math::AngNormalize(ang) is (nearly) an exact multiple of 360
513 real n = round((ang - Math::AngNormalize(ang))/Math::td);
514 real sn, cn;
515 Math::sincosd(ang, sn, cn);
516 return E(sn, cn, Delta(sn, cn)) + 4 * E() * n;
517 }
518
520 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
521 return fabs(phi) < Math::pi() ? Pi(sn, cn, dn) :
522 (deltaPi(sn, cn, dn) + phi) * Pi() / (Math::pi()/2);
523 }
524
526 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
527 return fabs(phi) < Math::pi() ? D(sn, cn, dn) :
528 (deltaD(sn, cn, dn) + phi) * D() / (Math::pi()/2);
529 }
530
532 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
533 return fabs(phi) < Math::pi() ? G(sn, cn, dn) :
534 (deltaG(sn, cn, dn) + phi) * G() / (Math::pi()/2);
535 }
536
538 real sn = sin(phi), cn = cos(phi), dn = Delta(sn, cn);
539 return fabs(phi) < Math::pi() ? H(sn, cn, dn) :
540 (deltaH(sn, cn, dn) + phi) * H() / (Math::pi()/2);
541 }
542
544 static const real tolJAC =
545 sqrt(numeric_limits<real>::epsilon() * real(0.01));
546 real n = floor(x / (2 * _eEc) + real(0.5));
547 x -= 2 * _eEc * n; // x now in [-ec, ec)
548 // Linear approximation
549 real phi = Math::pi() * x / (2 * _eEc); // phi in [-pi/2, pi/2)
550 // First order correction
551 phi -= _eps * sin(2 * phi) / 2;
552 // For kp2 close to zero use asin(x/_eEc) or
553 // J. P. Boyd, Applied Math. and Computation 218, 7005-7013 (2012)
554 // https://doi.org/10.1016/j.amc.2011.12.021
555 for (int i = 0; i < num_ || GEOGRAPHICLIB_PANIC; ++i) {
556 real
557 sn = sin(phi),
558 cn = cos(phi),
559 dn = Delta(sn, cn),
560 err = (E(sn, cn, dn) - x)/dn;
561 phi -= err;
562 if (!(fabs(err) > tolJAC))
563 break;
564 }
565 return n * Math::pi() + phi;
566 }
567
568 Math::real EllipticFunction::deltaEinv(real stau, real ctau) const {
569 // Function is periodic with period pi
570 if (signbit(ctau)) { ctau = -ctau; stau = -stau; }
571 real tau = atan2(stau, ctau);
572 return Einv( tau * E() / (Math::pi()/2) ) - tau;
573 }
574
575} // namespace GeographicLib
Header for GeographicLib::EllipticFunction class.
#define GEOGRAPHICLIB_PANIC
Definition: Math.hpp:62
void sncndn(real x, real &sn, real &cn, real &dn) const
static real RJ(real x, real y, real z, real p)
Math::real deltaG(real sn, real cn, real dn) const
static real RG(real x, real y, real z)
Math::real deltaE(real sn, real cn, real dn) const
Math::real F(real phi) const
static real RC(real x, real y)
Math::real Einv(real x) const
static real RD(real x, real y, real z)
void Reset(real k2=0, real alpha2=0)
Math::real Delta(real sn, real cn) const
Math::real deltaD(real sn, real cn, real dn) const
Math::real Ed(real ang) const
Math::real deltaH(real sn, real cn, real dn) const
Math::real deltaF(real sn, real cn, real dn) const
static real RF(real x, real y, real z)
Math::real deltaPi(real sn, real cn, real dn) const
Math::real deltaEinv(real stau, real ctau) const
Exception handling for GeographicLib.
Definition: Constants.hpp:316
static void sincosd(T x, T &sinx, T &cosx)
Definition: Math.cpp:106
static T sq(T x)
Definition: Math.hpp:205
static T AngNormalize(T x)
Definition: Math.cpp:71
static T infinity()
Definition: Math.cpp:262
static T pi()
Definition: Math.hpp:183
@ td
degrees per turn
Definition: Math.hpp:142
Namespace for GeographicLib.
Definition: Accumulator.cpp:12
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)