
Copyright © 2008 The Apache Software Foundation. All rights reserved.

CapacityScheduler Guide

Table of contents

1 Purpose... 2

2 Overview.. 2

3 Features...2

4 Installation.. 3

5 Configuration..4

 5.1 Using the CapacityScheduler..4

 5.2 Setting up queues..4

 5.3 Queue properties... 4

 5.4 Resource based scheduling... 6

 5.5 Reviewing the configuration of the CapacityScheduler... 8

6 Example.. 8

CapacityScheduler Guide

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Purpose

This document describes the CapacityScheduler, a pluggable MapReduce scheduler for
Hadoop which allows for multiple-tenants to securely share a large cluster such that their
applications are allocated resources in a timely manner under constraints of allocated
capacities.

2 Overview

The CapacityScheduler is designed to run Hadoop Map-Reduce as a shared, multi-tenant
cluster in an operator-friendly manner while maximizing the throughput and the utilization of
the cluster while running Map-Reduce applications.

Traditionally each organization has it own private set of compute resources that have
sufficient capacity to meet the organization's SLA under peak or near peak conditions.
This generally leads to poor average utilization and the overhead of managing multiple
independent clusters, one per each organization. Sharing clusters between organizations is
a cost-effective manner of running large Hadoop installations since this allows them to reap
benefits of economies of scale without creating private clusters. However, organizations are
concerned about sharing a cluster because they are worried about others using the resources
that are critical for their SLAs.

The CapacityScheduler is designed to allow sharing a large cluster while giving each
organization a minimum capacity guarantee. The central idea is that the available resources
in the Hadoop Map-Reduce cluster are partitioned among multiple organizations who
collectively fund the cluster based on computing needs. There is an added benefit that an
organization can access any excess capacity no being used by others. This provides elasticity
for the organizations in a cost-effective manner.

Sharing clusters across organizations necessitates strong support for multi-tenancy since
each organization must be guaranteed capacity and safe-guards to ensure the shared cluster
is impervious to single rouge job or user. The CapacityScheduler provides a stringent set of
limits to ensure that a single job or user or queue cannot consume dispropotionate amount
of resources in the cluster. Also, the JobTracker of the cluster, in particular, is a precious
resource and the CapacityScheduler provides limits on initialized/pending tasks and jobs
from a single user and queue to ensure fairness and stability of the cluster.

The primary abstraction provided by the CapacityScheduler is the concept of queues. These
queues are typically setup by administrators to reflect the economics of the shared cluster.

3 Features

The CapacityScheduler supports the following features:

CapacityScheduler Guide

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

• Capacity Guarantees - Support for multiple queues, where a job is submitted to a
queue.Queues are allocated a fraction of the capacity of the grid in the sense that a certain
capacity of resources will be at their disposal. All jobs submitted to a queue will have
access to the capacity allocated to the queue. Adminstrators can configure soft limits and
optional hard limits on the capacity allocated to each queue.

• Security - Each queue has strict ACLs which controls which users can submit jobs to
individual queues. Also, there are safe-guards to ensure that users cannot view and/or
modify jobs from other users if so desired. Also, per-queue and system administrator
roles are supported.

• Elasticity - Free resources can be allocated to any queue beyond it's capacity. When
there is demand for these resources from queues running below capacity at a future point
in time, as tasks scheduled on these resources complete, they will be assigned to jobs
on queues running below the capacity. This ensures that resources are available in a
predictable and elastic manner to queues, thus preventing artifical silos of resources in the
cluster which helps utilization.

• Multi-tenancy - Comprehensive set of limits are provided to prevent a single job, user
and queue from monpolizing resources of the queue or the cluster as a whole to ensure
that the system, particularly the JobTracker, isn't overwhelmed by too many tasks or jobs.

• Operability - The queue definitions and properties can be changed, at runtime, by
administrators in a secure manner to minimize disruption to users. Also, a console is
provided for users and administrators to view current allocation of resources to various
queues in the system.

• Resource-based Scheduling - Support for resource-intensive jobs, wherein a job can
optionally specify higher resource-requirements than the default, there-by accomodating
applications with differing resource requirements. Currently, memory is the the resource
requirement supported.

• Job Priorities - Queues optionally support job priorities (disabled by default). Within
a queue, jobs with higher priority will have access to the queue's resources before jobs
with lower priority. However, once a job is running, it will not be preempted for a higher
priority job, premption is on the roadmap is currently not supported.

4 Installation

The CapacityScheduler is available as a JAR file in the Hadoop tarball under the contrib/
capacity-scheduler directory. The name of the JAR file would be on the lines of hadoop-
capacity-scheduler-*.jar.

You can also build the Scheduler from source by executing ant package, in which case it
would be available under build/contrib/capacity-scheduler.

To run the CapacityScheduler in your Hadoop installation, you need to put it on the
CLASSPATH. The easiest way is to copy the hadoop-capacity-scheduler-*.jar

CapacityScheduler Guide

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

from to HADOOP_HOME/lib. Alternatively, you can modify HADOOP_CLASSPATH to
include this jar, in conf/hadoop-env.sh.

5 Configuration

5.1 Using the CapacityScheduler

To make the Hadoop framework use the CapacityScheduler, set up the following property in
the site configuration:

Property Value

mapred.jobtracker.taskScheduler org.apache.hadoop.mapred.CapacityTaskScheduler

5.2 Setting up queues

You can define multiple queues to which users can submit jobs with the CapacityScheduler.
To define multiple queues, you should use the mapred.queue.names property in conf/
hadoop-site.xml.

The CapacityScheduler can be configured with several properties for each queue that control
the behavior of the Scheduler. This configuration is in the conf/capacity-scheduler.xml.

You can also configure ACLs for controlling which users or groups have access to the
queues in conf/mapred-queue-acls.xml.

For more details, refer to Cluster Setup documentation.

5.3 Queue properties

5.3.1 Resource allocation

The properties defined for resource allocations to queues and their descriptions are listed in
below:

Name Description

mapred.capacity-scheduler.queue.<queue-
name>.capacity

Percentage of the number of slots in the cluster that
are made to be available for jobs in this queue. The
sum of capacities for all queues should be less than or
equal 100.

mapred.capacity-scheduler.queue.<queue-
name>.maximum-capacity

maximum-capacity defines a limit beyond which
a queue cannot use the capacity of the cluster.This
provides a means to limit how much excess capacity
a queue can use. By default, there is no limit. The
maximum-capacity of a queue can only be greater
than or equal to its minimum capacity. Default

cluster_setup.html#Configuring+the+Hadoop+Daemons

CapacityScheduler Guide

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

Name Description

value of -1 implies a queue can use complete
capacity of the cluster. This property could be to
curtail certain jobs which are long running in nature
from occupying more than a certain percentage of
the cluster, which in the absence of pre-emption,
could lead to capacity guarantees of other queues
being affected. One important thing to note is that
maximum-capacity is a percentage , so based on
the cluster's capacity it would change. So if large
no of nodes or racks get added to the cluster ,
maximum Capacity in absolute terms would increase
accordingly.

mapred.capacity-scheduler.queue.<queue-
name>.minimum-user-limit-percent

Each queue enforces a limit on the percentage of
resources allocated to a user at any given time, if
there is competition for them. This user limit can
vary between a minimum and maximum value.
The former depends on the number of users who
have submitted jobs, and the latter is set to this
property value. For example, suppose the value of
this property is 25. If two users have submitted jobs
to a queue, no single user can use more than 50%
of the queue resources. If a third user submits a job,
no single user can use more than 33% of the queue
resources. With 4 or more users, no user can use
more than 25% of the queue's resources. A value of
100 implies no user limits are imposed.

mapred.capacity-scheduler.queue.<queue-
name>.user-limit-factor

The multiple of the queue capacity which can be
configured to allow a single user to acquire more
slots. By default this is set to 1 which ensure that
a single user can never take more than the queue's
configured capacity irrespective of how idle th cluster
is.

mapred.capacity-scheduler.queue.<queue-
name>.supports-priority

If true, priorities of jobs will be taken into account in
scheduling decisions.

5.3.2 Job initialization

Capacity scheduler lazily initializes the jobs before they are scheduled, for reducing the
memory footprint on jobtracker. Following are the parameters, by which you can control the
initialization of jobs per-queue.

CapacityScheduler Guide

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

Name Description

mapred.capacity-scheduler.maximum-system-jobs Maximum number of jobs in the system which can be
initialized, concurrently, by the CapacityScheduler.
Individual queue limits on initialized jobs are directly
proportional to their queue capacities.

mapred.capacity-scheduler.queue.<queue-
name>.maximum-initialized-active-tasks

The maximum number of tasks, across all jobs in the
queue, which can be initialized concurrently. Once
the queue's jobs exceed this limit they will be queued
on disk.

mapred.capacity-scheduler.queue.<queue-
name>.maximum-initialized-active-tasks-per-user

The maximum number of tasks per-user, across all
the of the user's jobs in the queue, which can be
initialized concurrently. Once the user's jobs exceed
this limit they will be queued on disk.

mapred.capacity-scheduler.queue.<queue-name>.init-
accept-jobs-factor

The multipe of (maximum-system-jobs * queue-
capacity) used to determine the number of jobs which
are accepted by the scheduler. The default value is
10. If number of jobs submitted to the queue exceeds
this limit, job submission are rejected.

5.4 Resource based scheduling

The CapacityScheduler supports scheduling of tasks on a TaskTracker(TT) based on a
job's memory requirements in terms of RAM and Virtual Memory (VMEM) on the TT node.
A TT is conceptually composed of a fixed number of map and reduce slots with fixed slot
size across the cluster. A job can ask for one or more slots for each of its component map
and/or reduce slots. If a task consumes more memory than configured the TT forcibly kills
the task.

Currently the memory based scheduling is only supported in Linux platform.

Additional scheduler-based config parameters are as follows:

Name Description

mapred.cluster.map.memory.mb The size, in terms of virtual memory,
of a single map slot in the Map-Reduce
framework, used by the scheduler. A job
can ask for multiple slots for a single map
task via mapred.job.map.memory.mb,
upto the limit specified by
mapred.cluster.max.map.memory.mb, if
the scheduler supports the feature. The value of -1
indicates that this feature is turned off.

CapacityScheduler Guide

Page 7Copyright © 2008 The Apache Software Foundation. All rights reserved.

Name Description

mapred.cluster.reduce.memory.mb The size, in terms of virtual memory, of a single
reduce slot in the Map-Reduce framework,
used by the scheduler. A job can ask for
multiple slots for a single reduce task via
mapred.job.reduce.memory.mb,
upto the limit specified by
mapred.cluster.max.reduce.memory.mb,
if the scheduler supports the feature.The value of -1
indicates that this feature is turned off.

mapred.cluster.max.map.memory.mb The maximum size, in terms of virtual memory,
of a single map task launched by the Map-
Reduce framework, used by the scheduler. A
job can ask for multiple slots for a single map
task via mapred.job.map.memory.mb,
upto the limit specified by
mapred.cluster.max.map.memory.mb, if
the scheduler supports the feature. The value of -1
indicates that this feature is turned off.

mapred.cluster.max.reduce.memory.mb The maximum size, in terms of virtual memory,
of a single reduce task launched by the Map-
Reduce framework, used by the scheduler. A
job can ask for multiple slots for a single reduce
task via mapred.job.reduce.memory.mb,
upto the limit specified by
mapred.cluster.max.reduce.memory.mb,
if the scheduler supports the feature. The value of -1
indicates that this feature is turned off.

mapred.job.map.memory.mb The size, in terms of virtual memory, of a single
map task for the job. A job can ask for multiple
slots for a single map task, rounded up to the next
multiple of mapred.cluster.map.memory.mb
and upto the limit specified by
mapred.cluster.max.map.memory.mb,
if the scheduler supports the feature. The value
of -1 indicates that this feature is turned off iff
mapred.cluster.map.memory.mb is also
turned off (-1).

mapred.job.reduce.memory.mb The size, in terms of virtual memory, of
a single reduce task for the job. A job can
ask for multiple slots for a single reduce
task, rounded up to the next multiple of
mapred.cluster.reduce.memory.mb

CapacityScheduler Guide

Page 8Copyright © 2008 The Apache Software Foundation. All rights reserved.

Name Description

and upto the limit specified by
mapred.cluster.max.reduce.memory.mb,
if the scheduler supports the feature. The value
of -1 indicates that this feature is turned off iff
mapred.cluster.reduce.memory.mb is also
turned off (-1).

5.5 Reviewing the configuration of the CapacityScheduler

Once the installation and configuration is completed, you can review it after starting the
MapReduce cluster from the admin UI.

• Start the MapReduce cluster as usual.
• Open the JobTracker web UI.
• The queues you have configured should be listed under the Scheduling Information

section of the page.
• The properties for the queues should be visible in the Scheduling Information column

against each queue.
• The /scheduler web-page should show the resource usages of individual queues.

6 Example

Here is a practical example for using CapacityScheduler:

<?xml version="1.0"?>
<configuration>
<!-- system limit, across all queues -->
<property>
 <name>mapred.capacity-scheduler.maximum-system-jobs</name>
 <value>3000</value>
<description>Maximum number of jobs in the system which can be
initialized,
concurrently, by the CapacityScheduler.
</description>
</property>
<!-- queue: queueA -->
<property>
 <name>mapred.capacity-scheduler.queue.queueA.capacity</name>
 <value>8</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueA.supports-priority</name>
 <value>false</value>
</property>
<property>

CapacityScheduler Guide

Page 9Copyright © 2008 The Apache Software Foundation. All rights reserved.

 <name>mapred.capacity-scheduler.queue.queueA.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueA.user-limit-factor</name>
 <value>10</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueA.maximum-initialized-
active-tasks</name>
 <value>200000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueA.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueA.init-accept-jobs-factor</
name>
 <value>100</value>
</property>
<!-- queue: queueB -->
<property>
 <name>mapred.capacity-scheduler.queue.queueB.capacity</name>
 <value>2</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueB.supports-priority</name>
 <value>false</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueB.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueB.user-limit-factor</name>
 <value>1</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueB.maximum-initialized-
active-tasks</name>
 <value>200000</value>
</property>
<property>

CapacityScheduler Guide

Page 10Copyright © 2008 The Apache Software Foundation. All rights reserved.

 <name>mapred.capacity-scheduler.queue.queueB.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueB.init-accept-jobs-factor</
name>
 <value>10</value>
</property>
<!-- queue: queueC -->
<property>
 <name>mapred.capacity-scheduler.queue.queueC.capacity</name>
 <value>30</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.supports-priority</name>
 <value>false</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.user-limit-factor</name>
 <value>1</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.maximum-initialized-
active-tasks</name>
 <value>200000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueC.init-accept-jobs-factor</
name>
 <value>10</value>
</property>
<!-- queue: queueD -->
<property>
 <name>mapred.capacity-scheduler.queue.queueD.capacity</name>
 <value>1</value>
</property>
<property>

CapacityScheduler Guide

Page 11Copyright © 2008 The Apache Software Foundation. All rights reserved.

 <name>mapred.capacity-scheduler.queue.queueD.supports-priority</name>
 <value>false</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueD.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueD.user-limit-factor</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueD.maximum-initialized-
active-tasks</name>
 <value>200000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueD.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueD.init-accept-jobs-factor</
name>
 <value>10</value>
</property>
<!-- queue: queueE -->
<property>
 <name>mapred.capacity-scheduler.queue.queueE.capacity</name>
 <value>31</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.supports-priority</name>
 <value>false</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.user-limit-factor</name>
 <value>1</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.maximum-initialized-
active-tasks</name>

CapacityScheduler Guide

Page 12Copyright © 2008 The Apache Software Foundation. All rights reserved.

 <value>200000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueE.init-accept-jobs-factor</
name>
 <value>10</value>
</property>
<!-- queue: queueF -->
<property>
 <name>mapred.capacity-scheduler.queue.queueF.capacity</name>
 <value>28</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.supports-priority</name>
 <value>false</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.minimum-user-limit-
percent</name>
 <value>20</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.user-limit-factor</name>
 <value>1</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.maximum-initialized-
active-tasks</name>
 <value>200000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.maximum-initialized-
active-tasks-per-user</name>
 <value>100000</value>
</property>
<property>
 <name>mapred.capacity-scheduler.queue.queueF.init-accept-jobs-factor</
name>
 <value>10</value>
</property>
</configuration>

	Table of contents
	1 Purpose
	2 Overview
	3 Features
	4 Installation
	5 Configuration
	5.1 Using the CapacityScheduler
	5.2 Setting up queues
	5.3 Queue properties
	5.3.1 Resource allocation
	5.3.2 Job initialization

	5.4 Resource based scheduling
	5.5 Reviewing the configuration of the CapacityScheduler

	6 Example

