
Efficient clipping of arbitrary polygons
Günther Greiner · Kai Hormann

Abstract

Clipping 2D polygons is one of the basic routines in computer graphics. In rendering
complex 3D images it has to be done several thousand times. Efficient algorithms are
therefore very important. We present such an efficient algorithm for clipping arbitrary
2D polygons. The algorithm can handle arbitrary closed polygons, specifically where
the clip and subject polygons may self-intersect. The algorithm is simple and faster
than Vatti’s algorithm [11], which was designed for the general case as well. Simple
modifications allow determination of union and set-theoretic difference of two arbitrary
polygons.

Citation Info

Journal
ACM Transactions on Graphics

Volume
17(2), April 1998

Pages
71–83

1 Introduction

Clipping 2D polygons is a fundamental operation in image synthesis. For example, it can be used to render 3D
images through hidden surface removal [10], or to distribute the objects of a scene to appropriate processors in
a multiprocessor ray tracing system. Several very efficient algorithms are available for special cases: Sutherland
and Hodgeman’s algorithm [10] is limited to convex clip polygons. That of Liang and Barsky [5] require that the
clip polygon be rectangular. More general algorithms were presented in [1, 6, 8, 9, 13]. They allow concave
polygons with holes, but they do not permit self-intersections, which may occur, e.g., by projecting warped
quadrilaterals into the plane.

For the general case of arbitrary polygons (i.e., neither the clip nor the subject polygon is convex, both
polygons may have self-intersections), little is known. To our knowledge, only the Weiler algorithm [12] and
Vatti’s algorithm [11] can handle the general case in reasonable time. Both algorithms are quite complicated.

In this paper we present an algorithm for clipping arbitrary polygons, that is conceptually simple, for
example, the data structure for the polygons we use is less complex. While in Weiler’s algorithm the input
polygons are combined into a single graph structure, we represent all polygons (input as well as output) as
doubly linked lists. In all three approaches all the intersections between the two input polygons have to be
determined first (in Vatti’s algorithm, self-intersections of each input polygon as well). Merging these in-
tersection points into the data structure is the decisive step. We think that our approach is more intuitive
and considerably simpler than Weiler’s algorithm. Finally, we obtain each output polygon by a simple tra-
versal of the (modified) input polygons. In Weiler’s algorithm, traversals of the tree are necessary. A runtime
comparison with Vatti’s algorithm is given in the final section. Weiler’s algorithm as well as the one presen-
ted here can also determine other Boolean operations of two arbitrary polygons: union and set-theoretic
difference.

This paper is organized as follows. In the next section we specify what the interior of an arbitrary polygon
is. In Section 3 we outline the basic concept of the algorithm. We then describe the data structure used to
represent polygons in Section 4. In Section 5 we describe how the intersection points are merged into the data
structure and give details of the implementation. In the final section, results are discussed and compared to
Vatti’s algorithm.

2 Basics

A closed polygon P is described by the ordered set of its vertices P0, P1, P2, . . . , Pn = P0. It consists of all line
segments consecutively connecting the points Pi , i.e., P0P1, P1P2, . . . , Pn−1Pn = Pn−1P0.

For a convex polygon it is quite simple to specify the interior and the exterior. However, since we al-
low polygons with self-intersections we must specify more carefully what the interior of such a closed po-
lygon is. We base the definition on the winding number [4]. For a closed curve γ and a point A not lying
on the curve, the winding number ω(γ, A) tells how often a ray centred at A and moving once along the
whole closed curve winds around A, counting counterclockwise windings by+1 and clockwise windings by−1
(see Figure 1).

1

γ

A ϕ

Figure 1: Winding number: ω(γ, A) = 1
2π

∫

dϕ.

Ã

γ

A

γ add
circle

1ωω ω+1 ω+1

Figure 2: Change of the winding number when a point
crosses the curve.

The winding number has several important properties:

• When A is moved continuously and/or the curve γ is deformed continuously in such a way that A always
keeps a positive distance to γ, the winding number will not change.

• For a fixed curve γ, the winding numberω(γ, ·) is constant on each component of the complementR2\γ.
Moreover, if A lies in the unbounded component of R2 \γ thenω(γ, A) = 0.

• If A moves and thereby crosses the curve once, the winding number decreases or increases by exactly 1.

The third statement is the basis for the algorithm below. It can be derived from the first as is illustrated in
Figure 2.

The interior of a closed curve (e.g., a closed polygon) is now defined as follows:

Definition 1. A point A lies in the interior of the closed curve γ if and only if the winding number ω(γ, A) is
odd.

Then the definition and the third property of the winding number stated above imply the following: A path
that intersects the polygon exactly once traverses either from the interior to the exterior of the polygon, or vice
versa.

This property leads to an efficient algorithm to detect whether a point lies inside or outside a polygon,
namely the even-odd rule [4]. The winding numbers and the interior of a closed polygon are shown in Figure 3.

Given two polygons, a clip (clipper) and a subject polygon (clippee), the clipped polygon consists of all
points interior to the clip polygon that lie inside the subject polygon. This set will be a polygon or a set of poly-
gons. Thus, clipping a polygon against another polygon means determining the intersection of two polygons.
In general, this intersection consists of several closed polygons. Instead of intersection, one can perform other
Boolean operations (to the interior): e.g., union and set-theoretic difference (see Figure 8).

+1+1

−1−1

−1−1

+1+1

−1−1

−1−1

−2−2

−2−2

−2−2
−3−3

Figure 3: Winding numbers (6= 0) and interior for an arbitrarily complex polygon.

2

S

C

Figure 4: Example of clip
(C) and subject (S) polygon.

S

C

Figure 5: Parts of subject
polygon inside clip polygon
(S ∩C int).

S

C

Figure 6: Parts of clip poly-
gon inside subject polygon
(C ∩S int).

Figure 7: The resulting clip-
ped polygon.

3 General concept

The process of clipping an arbitrary polygon against another arbitrary polygon can be reduced to finding those
portions of the boundary of each polygon that lie inside the other polygon. These partial boundaries can then
be connected to form the final clipped polygon.

To clarify this, consider the example in Figure 4: the task is to clip the polygon with the dotted lines (referred
to as the subject polygon S) against the polygon with the broken lines (referred to as the clip polygon C).

We start by determining which parts of the subject polygon boundary lie inside the clip polygon (Figure 5).
We can find the parts by considering the following analogous situation: imagine pushing a chalk cart along the
subject polygon boundary. We start at some vertex of the polygon, and open the distribution hatch at the start
if the vertex lies inside the clip polygon. We then push the cart along the subject polygon toggling the position
of the hatch (open/closed) whenever we cross an edge of the clip polygon. We stop when we reach our starting
vertex. Then the parts of the subject polygon that lie inside the clip polygon will be marked with chalk.

We use the same technique, but this time running our chalk cart along the clip polygon in order to discover
those parts of the clip polygon that lie inside the subject polygon (Figure 6).

Once we have found all the parts of the polygon edges that lie inside the other polygon, we merge the parts
to obtain the clipped polygon (Figure 7).

The process of merging is easy, considering the fact that each part of the subject polygon that will be in
the outcome is bounded by two intersection points of subject and clip polygon. These vertices are also the
beginning or end of one of the clip polygon’s relevant parts. Therefore, if you keep track of the intersection
points and the parts they come from, connecting the supporting parts in the correct order is easy (shown in
Section 5).

Set-theoretic difference and the union of the two polygons can also be calculated by making the following
modification to the algorithm. To determine S \C , one first marks the parts of the subject polygon that are
exterior to the clip polygon. These will be merged with the relevant parts of the clip polygon (the procedure is
illustrated in the left part of Figure 8). Determination of the union is sketched in the middle of Figure 8 and the
right part of Figure 8 shows how the difference C \S can be obtained.

4 Data structures

Our algorithm requires a data structure for representing polygons. As shown later, a doubly linked list of nodes
is most suitable. Each node represents one of the polygon’s vertices and contains the following information,
shown in Figure 9

Normally a vertex only needs x and y to store its coordinates and next and prev as links to the neighbou-
ring vertices. Because the clipping process may result in a set of n polygons (P 1, . . . , P n), we use nextPoly
to handle a linked list of polygons, i.e., we let the nextPoly pointer of the first vertex of the k -th polygon
(P k ,0→ nextPoly) point at the first vertex of the (k +1)-th polygon P k+1,0, k = 1, . . . , n −1.

The remaining fields (intersect, entry_exit, neighbour, alpha) are used internally by the algorithm:
Intersection points of subject and clip polygon are marked by the intersect flag. During the algorithm’s
execution, all intersection points are determined, and two copies, linked by the neighbour pointer, inserted
into the data structure of both the subject and the clip polygon. That means the intersection point inserted
into the subject polygon’s data structure is connected to the one inserted into the clip polygon’s data structure,

3

C ∩Sint

S

C

S ∩Cext C ∩Sext S ∩C int

S

C

↘ ↙ ↘ ↙ ↘ ↙

S \C S ∪C C \S

Figure 8: Set theoretic differences and union of two polygons.

using the neighbour pointer, and vice versa. To accelerate the sorting process, we store an alpha value,
indicating where the intersection point lies relatively to the start and end point of the edge. Remembering the
chalk cart analogy, we also need an entry_exit flag to record whether the intersecting point is an entry or an
exit point to the other polygon’s interior.

Figure 10 shows an example clipping problem and the data structure generated by the algorithm.

5 The algorithm

The algorithm operates in three phases:
In phase one (Figure 11), we search for all intersection points by testing whether each edge of the sub-

ject polygon and each of the clip polygon intersect or not. If they do, the intersection routine (Figure 14)
delivers two numbers between 0 and 1, the alpha values, which indicate where the intersection point lies
relative to start and end point of both edges. With respect to the alpha values, we create new vertices and
insert them into the data structures of subject and clip polygon between the start and end point of the edges
that intersect. If no intersection points are detected, we know that either the subject polygon lies entirely in-
side the clip polygon, or vice versa, or that both polygons are disjoint. By performing the even-odd rule we
can easily decide which case we have, and simply return either the inner polygon as the clipped polygon or
nothing at all.

Phase two (Figure 12) is analogous to the chalk cart in Section 3. We trace each polygon once and mark entry
and exit points to the other polygon’s interior. We start at the polygon’s first vertex and detect, using the even-

vertex = { x, y : coordinates;
next, prev : vertexPtr;
nextPoly : vertexPtr;
intersect : boolean;
entry_exit : boolean;
neighbour : vertexPtr;
alpha : float;

}

Figure 9: Vertex data structure.

4

C1 C2

C3C4

S2S4

S3

S1S5

I1I2

I3

I4

clip polygon C

I1
entry

I2
exit

I3
entry

I4
exit

C4
next
lastC1 C2 C3

I2
exit

S3 I3
entry

I4
exit

S5S1 S2

subject polygon S

I1
entry

S4

neighbour

neighbour
neighbour

neighbour

S2 I2I1

clipped polygon I

S4 I4I3

nextPoly

Figure 10: Data structure for polygons.

odd rule, whether this point lies inside the other polygon or not. We then move along the polygon vertices and
mark the intersecting points inserted in phase one (and marked by the intersect flag) alternately as entry
and exit points, respectively.

In phase three (Figure 13), we create the desired clipped polygon by filtering it out of the enhanced data
structures of subject and clip polygon. In order to build the clipped polygon, we use two routines: newPolygon
and newVertex. The routine newPolygon registers the beginning of a new polygon while the vertices of that
polygon are transferred by newVertex; for example, the sequence

newPolygon
newVertex(A)
newVertex(B)
newVertex(C)
newPolygon
newVertex(D)
newVertex(E)
newVertex(F)
newVertex(G)

generates a set of two polygons, P 1 = A BC and P 2 =DE FG , and A→ nextPoly points at D.

for each vertex Si of subject polygon do
for each vertex Cj of clip polygon do

if intersect(Si,Si+1,Cj,Cj+1,a,b)
I1 = CreateVertex(Si,Si+1,a)
I2 = CreateVertex(Cj,Cj+1,b)
link intersection points I1 and I2
sort I1 into subject polygon
sort I2 into clip polygon

end if
end for

end for

Figure 11: Pseudo-code for phase one.

5

for both polygons P do
if P0 inside other polygon

status = exit
else

status = entry
end if
for each vertex Pi of polygon do

if Pi->intersect then
Pi->entry_exit = status
toggle status

end if
end for

end for

Figure 12: Pseudo Code for phase two.

To illustrate the pseudo-code of phase three (Figure 13), we use our chalk cart again, here called “current”.
First we place it at one of the intersection points. Since we want to mark the clipped polygon, we open the hatch
(newPolygon) and move the cart along the subject polygon’s edge into the interior of the clip polygon. The
entry_exit flag tells us which direction to choose: entry means forward direction (next) while exit tells us to
go backward (prev). Each time we reach a vertex we remember it by calling the routine newVertex. We leave
the clip polygon’s interior as soon as we come to the next intersection point. This is where we turn the cart
(current= current→ neighbour) in order to move along the clip polygon’s edges. Again, the entry_exit
flag tells us which route leads to the other polygon’s interior.

We continue this process until we arrive at the starting vertex and close the hatch (and the polygon). If
there are still intersection points that have not yet been chalked (i.e., the clipped polygon is a set of polygons),
we move the chalk cart there and repeat the whole procedure until there are no unmarked intersection points
left.

Finding the intersection of two lines, say P1P2 and Q1Q2 is clearly a basic operation of the algorithm. This
can be done effectively in the following way: determine window edge coordinates, outcodes and α-values [3, 4]
of Pi with respect to Q1Q2 and, if necessary, also for Qi with respect to P1P2.

This algorithm will enable detection of many cases where there is no intersection. When there is an inter-
section, the procedure intersect (Figure 14) will return the α-values alphaP and alphaQ for the point of
intersection with respect to P1P2 and Q1Q2, respectively.

while unprocessed intersecting points in subject polygon
current = first unprocessed intersecting point of subject polygon
newPolygon
newVertex(current)
repeat

if current->entry
repeat

current = current->next
newVertex(current)

until current->intersect
else

repeat
current = current->prev
newVertex(current)

until current->intersect
end if
current = current->neighbor

until PolygonClosed
end while

Figure 13: Pseudo-code for phase three.

6

intersect(P1,P2,Q1,Q2,alphaP,alphaQ)
WEC_P1 = <P1 - Q1 | (Q2 - Q1)⊥>
WEC_P2 = <P2 - Q1 | (Q2 - Q1)⊥>
if (WEC_P1*WEC_P2 <= 0)

WEC_Q1 = <Q1 - P1 | (P2 - P1)⊥>
WEC_Q2 = <Q2 - P1 | (P2 - P1)⊥>
if (WEC_Q1*WEC_Q2 <= 0)

alphaP = WEC_P1/(WEC_P1 - WEC_P2)
alphaQ = WEC_Q1/(WEC_Q1 - WEC_Q2)
return(true); exit

end if
end if
return(false)

end intersect

Figure 14: Pseudo-code for the intersection.

So far we have tacitly assumed that there are no degeneracies, i.e., each vertex of one polygon does not lie
on an edge of the other polygon [2]. Degeneracies can be detected in the intersect procedure. For example,
P1 lies on the line Q1Q2 if and only if alphaP= 0 and 0≤ alphaQ≤ 1. In this case, we perturb P1 slightly, such
that for the perturbed point P̃1 we have alphaP 6= 0. We allow the algorithm to continue, replacing P1 with P̃1.
Two typical examples are given in Figure 15. For each case two possible perturbations are sketched. If we take
care that the perturbation is less than pixel width, the output on the screen will be correct.

Q1

Q2

P1

P̃1

P̃1

Q1

Q2P1

P̃1

P̃1

Figure 15: Two degenerate configurations (left/right); two possible perturbations for each example (upper/lower).

6 Evaluation

Both the Vatti algorithm and the one presented here have been implemented in C on a Silicon Graphics Indigo
work station. Given an integer n , a subject and a clip polygon with n vertices were generated at random and
clipped against one other, first using the Vatti algorithm and then the algorithm described above. This was
done a thousand times, and the running times of both algorithms were recorded. The resulting average times
(in ms) are listed in columns two and three of Table 1. The improvement factors of our method over Vatti’s
algorithm are shown in the next column. The table demonstrates that the improvement factor increases with
the size of n . We give an explanation below.

n Vatti new algorithm improvement intersections
3 0.272 0.175 1.55 1.98
5 0.644 0.366 1.76 5.88

10 2.093 1.163 1.80 23.40
20 8.309 4.218 1.97 91.31
50 66.364 30.724 2.16 583.40

Table 1: Results of implementation.

7

Figure 16: Worst case for the intersection of two polygons. Figure 17: Worst case for self-intersection.

As explained above, the intersection points of subject and clip polygon are part of the clipped polygon,
hence there is no way to avoid calculating them. In order to illustrate the typical number of intersections, we
recorded them for each trial. The averages of these numbers are listed in the last column of Table 1. Inspecting
these values, we observe that they grow with n 2. Figure 16 shows that if we have a polygon with n edges and
another with m edges, the number of intersections can be nm in the worst case. So the average number of
intersections grows on the order of O(nm).

There is a well-known result in computational geometry based on the plane sweep algorithm, which says
that if there are N line segments generating k intersections, then these intersections can be reported in time
O((N +k) log(N)) [7]. Note that this relation yields an even worse complexity in the worst case.

Since the computation of the intersections involves floating point operations, it is a complex task compared
to the remaining work that has to be done by the algorithm (sorting, pointer assignments, etc.). Measurements
revealed that intersection calculation accounts for roughly 80% of the run time. Consequently, any clipping
algorithm supporting arbitrary polygons must have complexity O(nm)with n and m the edge numbers of the
polygons. This statement is confirmed by the average timings of both algorithms.

The reason for the poorer performance of Vatti’s algorithm is that it also has to compute the self-intersec-
tion points of both polygons. Figure 17 indicates that the number of self-intersection points for a polygon with
n edges can be O(n 2) in the worst case. This might be the reason why the improvement factor of our algorithm
(compared to Vatti’s algorithm) grows with the increasing number of edges.

Acknowledgements

The authors wish to thank the anonymous referees for their critical comments which helped to improve this paper.

References

[1] R. D. Andreev. Algorithm for clipping arbitrary polygons. Computer Graphics Forum, 8(3):183–191, Sept. 1989.

[2] J. F. Blinn. Fractional invisibility. IEEE Computer Graphics and Applications, 8(6):77–84, Nov./Dec. 1988.

[3] J. F. Blinn. A trip down the graphics pipeline: Line clipping. IEEE Computer Graphics and Applications, 11(1):98–105,
Jan./Feb. 1991.

[4] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice. The Systems
Programming Series. Addison-Wesley, Reading, 2nd edition, 1990.

[5] Y.-D. Liang and B. A. Barsky. An analysis and algorithm for polygon clipping. Communications of the ACM, 26(11):868–
877, Nov. 1983.

[6] C. Montani and M. Re. Vector and raster hidden-surface removal using parallel connected stripes. IEEE Computer
Graphics and Applications, 7(7):14–23, July 1987.

[7] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Computer
Science. Springer, New York, 1985.

[8] A. Rappoport. An efficient algorithm for line and polygon clipping. The Visual Computer, 7(1):19–28, Jan. 1991.

[9] S. Sechrest and D. P. Greenberg. A visible polygon reconstruction algorithm. Computer Graphics, 15(3):17–27, Aug.
1981. Proceedings of SIGGRAPH.

[10] I. E. Sutherland and G. W. Hodgman. Reentrant polygon clipping. Communications of the ACM, 17(1):32–42, Jan. 1974.

[11] B. R. Vatti. A generic solution to polygon clipping. Communications of the ACM, 35(7):56–63, July 1992.

[12] K. Weiler. Polygon comparison using a graph representation. Computer Graphics, 14(3):10–18, July 1980. Proceedings
of SIGGRAPH.

[13] K. Weiler and P. Atherton. Hidden surface removal using polygon area sorting. Computer Graphics, 11(2):214–222, July
1977. Proceedings of SIGGRAPH.

8

