LogisticRegressionModel#
- class pyspark.ml.connect.classification.LogisticRegressionModel(torch_model=None, num_features=None, num_classes=None)[source]#
- Model fitted by LogisticRegression. - New in version 3.5.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of batchSize or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of labelCol or its default value. - Gets the value of learningRate or its default value. - Gets the value of maxIter or its default value. - Gets the value of momentum or its default value. - Gets the value of numTrainWorkers or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of probabilityCol or its default value. - getSeed()- Gets the value of seed or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Load Estimator / Transformer / Model / Evaluator from provided cloud storage path. - loadFromLocal(path)- Load Estimator / Transformer / Model / Evaluator from provided local path. - save(path, *[, overwrite])- Save Estimator / Transformer / Model / Evaluator to provided cloud storage path. - saveToLocal(path, *[, overwrite])- Save Estimator / Transformer / Model / Evaluator to provided local path. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setPredictionCol(value)- Sets the value of - predictionCol.- transform(dataset[, params])- Transforms the input dataset. - Attributes - Returns the number of features the model was trained on. - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using - copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- Params
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - getBatchSize()#
- Gets the value of batchSize or its default value. 
 - getFeaturesCol()#
- Gets the value of featuresCol or its default value. 
 - getFitIntercept()#
- Gets the value of fitIntercept or its default value. 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getLearningRate()#
- Gets the value of learningRate or its default value. 
 - getMaxIter()#
- Gets the value of maxIter or its default value. 
 - getMomentum()#
- Gets the value of momentum or its default value. 
 - getNumTrainWorkers()#
- Gets the value of numTrainWorkers or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPredictionCol()#
- Gets the value of predictionCol or its default value. 
 - getProbabilityCol()#
- Gets the value of probabilityCol or its default value. 
 - getSeed()#
- Gets the value of seed or its default value. 
 - getTol()#
- Gets the value of tol or its default value. 
 - getWeightCol()#
- Gets the value of weightCol or its default value. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Load Estimator / Transformer / Model / Evaluator from provided cloud storage path. - New in version 3.5.0. 
 - classmethod loadFromLocal(path)#
- Load Estimator / Transformer / Model / Evaluator from provided local path. - New in version 3.5.0. 
 - save(path, *, overwrite=False)#
- Save Estimator / Transformer / Model / Evaluator to provided cloud storage path. - New in version 3.5.0. 
 - saveToLocal(path, *, overwrite=False)#
- Save Estimator / Transformer / Model / Evaluator to provided local path. - New in version 3.5.0. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setFeaturesCol(value)#
- Sets the value of - featuresCol.- New in version 3.5.0. 
 - setPredictionCol(value)#
- Sets the value of - predictionCol.- New in version 3.5.0. 
 - transform(dataset, params=None)#
- Transforms the input dataset. The dataset can be either pandas dataframe or spark dataframe, if it is a spark DataFrame, the result of transformation is a new spark DataFrame that contains all existing columns and output columns with names, If it is a pandas DataFrame, the result of transformation is a shallow copy of the input pandas dataframe with output columns with names. - Note: Transformers does not allow output column having the same name with existing columns. - Parameters
- datasetpyspark.sql.DataFrameor py:class:pandas.DataFrame
- input dataset. 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrameor py:class:pandas.DataFrame
- transformed dataset, the type of output dataframe is consistent with input dataframe. 
 
 
 - Attributes Documentation - batchSize = Param(parent='undefined', name='batchSize', doc='number of training batch size')#
 - featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 - fitIntercept = Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - learningRate = Param(parent='undefined', name='learningRate', doc='learning rate for training')#
 - maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')#
 - momentum = Param(parent='undefined', name='momentum', doc='momentum for training optimizer')#
 - numClasses#
 - numFeatures#
- Returns the number of features the model was trained on. If unknown, returns -1 - New in version 3.5.0. 
 - numTrainWorkers = Param(parent='undefined', name='numTrainWorkers', doc='number of training workers')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 - probabilityCol = Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')#
 - seed = Param(parent='undefined', name='seed', doc='random seed.')#
 - tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')#
 - weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')#
 - uid#
- A unique id for the object.