pyspark.pandas.json_normalize#
- pyspark.pandas.json_normalize(data, sep='.')[source]#
- Normalize semi-structured JSON data into a flat table. - New in version 4.0.0. - Parameters
- datadict or list of dicts
- Unserialized JSON objects. 
- sepstr, default ‘.’
- Nested records will generate names separated by sep. 
 
- Returns
- DataFrame
 
 - See also - DataFrame.to_json
- Convert the pandas-on-Spark DataFrame to a JSON string. 
 - Examples - >>> data = [ ... {"id": 1, "name": "Alice", "address": {"city": "NYC", "zipcode": "10001"}}, ... {"id": 2, "name": "Bob", "address": {"city": "SF", "zipcode": "94105"}}, ... ] >>> ps.json_normalize(data) id name address.city address.zipcode 0 1 Alice NYC 10001 1 2 Bob SF 94105