Word2VecModel#
- class pyspark.ml.feature.Word2VecModel(java_model=None)[source]#
- Model fitted by - Word2Vec.- New in version 1.4.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - findSynonyms(word, num)- Find "num" number of words closest in similarity to "word". - findSynonymsArray(word, num)- Find "num" number of words closest in similarity to "word". - Gets the value of inputCol or its default value. - Gets the value of maxIter or its default value. - Gets the value of maxSentenceLength or its default value. - Gets the value of minCount or its default value. - Gets the value of numPartitions or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - getSeed()- Gets the value of seed or its default value. - Gets the value of stepSize or its default value. - Gets the value of vectorSize or its default value. - Returns the vector representation of the words as a dataframe with two fields, word and vector. - Gets the value of windowSize or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setInputCol(value)- Sets the value of - inputCol.- setOutputCol(value)- Sets the value of - outputCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - findSynonyms(word, num)[source]#
- Find “num” number of words closest in similarity to “word”. word can be a string or vector representation. Returns a dataframe with two fields word and similarity (which gives the cosine similarity). - New in version 1.5.0. 
 - findSynonymsArray(word, num)[source]#
- Find “num” number of words closest in similarity to “word”. word can be a string or vector representation. Returns an array with two fields word and similarity (which gives the cosine similarity). - New in version 2.3.0. 
 - getInputCol()#
- Gets the value of inputCol or its default value. 
 - getMaxIter()#
- Gets the value of maxIter or its default value. 
 - getMaxSentenceLength()#
- Gets the value of maxSentenceLength or its default value. - New in version 2.0.0. 
 - getMinCount()#
- Gets the value of minCount or its default value. - New in version 1.4.0. 
 - getNumPartitions()#
- Gets the value of numPartitions or its default value. - New in version 1.4.0. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getOutputCol()#
- Gets the value of outputCol or its default value. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getSeed()#
- Gets the value of seed or its default value. 
 - getStepSize()#
- Gets the value of stepSize or its default value. 
 - getVectorSize()#
- Gets the value of vectorSize or its default value. - New in version 1.4.0. 
 - getVectors()[source]#
- Returns the vector representation of the words as a dataframe with two fields, word and vector. - New in version 1.5.0. 
 - getWindowSize()#
- Gets the value of windowSize or its default value. - New in version 2.0.0. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - transform(dataset, params=None)#
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')#
 - maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')#
 - maxSentenceLength = Param(parent='undefined', name='maxSentenceLength', doc='Maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks up to the size.')#
 - minCount = Param(parent='undefined', name='minCount', doc="the minimum number of times a token must appear to be included in the word2vec model's vocabulary")#
 - numPartitions = Param(parent='undefined', name='numPartitions', doc='number of partitions for sentences of words')#
 - outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - seed = Param(parent='undefined', name='seed', doc='random seed.')#
 - stepSize = Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')#
 - vectorSize = Param(parent='undefined', name='vectorSize', doc='the dimension of codes after transforming from words')#
 - windowSize = Param(parent='undefined', name='windowSize', doc='the window size (context words from [-window, window]). Default value is 5')#
 - uid#
- A unique id for the object.