Ruby 2.7.6p219 (2022-04-12 revision c9c2245c0a25176072e02db9254f0e0c84c805cd)
Macros | Functions | Variables
rational.c File Reference
#include "internal.h"
#include "id.h"
#include <math.h>
#include <float.h>
#include "ruby_assert.h"
#include <ctype.h>

Go to the source code of this file.

Macros

#define NDEBUG
 
#define ZERO   INT2FIX(0)
 
#define ONE   INT2FIX(1)
 
#define TWO   INT2FIX(2)
 
#define GMP_GCD_DIGITS   1
 
#define INT_POSITIVE_P(x)   (FIXNUM_P(x) ? FIXNUM_POSITIVE_P(x) : BIGNUM_POSITIVE_P(x))
 
#define INT_ZERO_P(x)   (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
 
#define id_idiv   idDiv
 
#define id_to_i   idTo_i
 
#define f_boolcast(x)   ((x) ? Qtrue : Qfalse)
 
#define f_inspect   rb_inspect
 
#define f_to_s   rb_obj_as_string
 
#define f_expt10(x)   rb_int_pow(INT2FIX(10), x)
 
#define f_nonzero_p(x)   (!f_zero_p(x))
 
#define k_exact_p(x)   (!k_float_p(x))
 
#define k_inexact_p(x)   k_float_p(x)
 
#define k_exact_zero_p(x)   (k_exact_p(x) && f_zero_p(x))
 
#define k_exact_one_p(x)   (k_exact_p(x) && f_one_p(x))
 
#define get_dat1(x)    struct RRational *dat = RRATIONAL(x)
 
#define get_dat2(x, y)    struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
 
#define canonicalization   0
 
#define nurat_expt   rb_rational_pow
 
#define id_ceil   rb_intern("ceil")
 
#define id_quo   idQuo
 
#define f_reciprocal(x)   f_quo(ONE, (x))
 
#define id_numerator   rb_intern("numerator")
 
#define f_numerator(x)   rb_funcall((x), id_numerator, 0)
 
#define id_denominator   rb_intern("denominator")
 
#define f_denominator(x)   rb_funcall((x), id_denominator, 0)
 
#define id_to_r   idTo_r
 
#define f_to_r(x)   rb_funcall((x), id_to_r, 0)
 
#define rb_intern(str)   rb_intern_const(str)
 

Functions

VALUE rb_gcd_normal (VALUE x, VALUE y)
 
VALUE rb_rational_uminus (VALUE self)
 
VALUE rb_rational_plus (VALUE self, VALUE other)
 
VALUE rb_rational_minus (VALUE self, VALUE other)
 
VALUE rb_rational_mul (VALUE self, VALUE other)
 
VALUE rb_rational_div (VALUE self, VALUE other)
 
VALUE rb_rational_pow (VALUE self, VALUE other)
 
VALUE rb_rational_cmp (VALUE self, VALUE other)
 
VALUE rb_rational_abs (VALUE self)
 
VALUE rb_rational_floor (VALUE self, int ndigits)
 
VALUE rb_rational_reciprocal (VALUE x)
 
VALUE rb_gcd (VALUE self, VALUE other)
 
VALUE rb_lcm (VALUE self, VALUE other)
 
VALUE rb_gcdlcm (VALUE self, VALUE other)
 
VALUE rb_rational_raw (VALUE x, VALUE y)
 
VALUE rb_rational_new (VALUE x, VALUE y)
 
VALUE rb_Rational (VALUE x, VALUE y)
 
VALUE rb_rational_num (VALUE rat)
 
VALUE rb_rational_den (VALUE rat)
 
VALUE rb_numeric_quo (VALUE x, VALUE y)
 
VALUE rb_rational_canonicalize (VALUE x)
 
VALUE rb_float_numerator (VALUE self)
 
VALUE rb_float_denominator (VALUE self)
 
VALUE rb_flt_rationalize_with_prec (VALUE flt, VALUE prec)
 
VALUE rb_flt_rationalize (VALUE flt)
 
VALUE rb_cstr_to_rat (const char *s, int strict)
 
void Init_Rational (void)
 

Variables

VALUE rb_cRational
 

Macro Definition Documentation

◆ canonicalization

#define canonicalization   0

Definition at line 425 of file rational.c.

◆ f_boolcast

#define f_boolcast (   x)    ((x) ? Qtrue : Qfalse)

Definition at line 42 of file rational.c.

◆ f_denominator

#define f_denominator (   x)    rb_funcall((x), id_denominator, 0)

Definition at line 1987 of file rational.c.

◆ f_expt10

#define f_expt10 (   x)    rb_int_pow(INT2FIX(10), x)

Definition at line 148 of file rational.c.

◆ f_inspect

#define f_inspect   rb_inspect

Definition at line 43 of file rational.c.

◆ f_nonzero_p

#define f_nonzero_p (   x)    (!f_zero_p(x))

Definition at line 164 of file rational.c.

◆ f_numerator

#define f_numerator (   x)    rb_funcall((x), id_numerator, 0)

Definition at line 1984 of file rational.c.

◆ f_reciprocal

#define f_reciprocal (   x)    f_quo(ONE, (x))

Definition at line 1630 of file rational.c.

◆ f_to_r

#define f_to_r (   x)    rb_funcall((x), id_to_r, 0)

Definition at line 1990 of file rational.c.

◆ f_to_s

#define f_to_s   rb_obj_as_string

Definition at line 44 of file rational.c.

◆ get_dat1

#define get_dat1 (   x)     struct RRational *dat = RRATIONAL(x)

Definition at line 386 of file rational.c.

◆ get_dat2

#define get_dat2 (   x,
 
)     struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)

Definition at line 389 of file rational.c.

◆ GMP_GCD_DIGITS

#define GMP_GCD_DIGITS   1

Definition at line 29 of file rational.c.

◆ id_ceil

#define id_ceil   rb_intern("ceil")

Definition at line 1606 of file rational.c.

◆ id_denominator

#define id_denominator   rb_intern("denominator")

Definition at line 1986 of file rational.c.

◆ id_idiv

#define id_idiv   idDiv

Definition at line 39 of file rational.c.

◆ id_numerator

#define id_numerator   rb_intern("numerator")

Definition at line 1983 of file rational.c.

◆ id_quo

#define id_quo   idQuo

Definition at line 1618 of file rational.c.

◆ id_to_i

#define id_to_i   idTo_i

Definition at line 40 of file rational.c.

◆ id_to_r

#define id_to_r   idTo_r

Definition at line 1989 of file rational.c.

◆ INT_POSITIVE_P

#define INT_POSITIVE_P (   x)    (FIXNUM_P(x) ? FIXNUM_POSITIVE_P(x) : BIGNUM_POSITIVE_P(x))

Definition at line 31 of file rational.c.

◆ INT_ZERO_P

#define INT_ZERO_P (   x)    (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))

Definition at line 32 of file rational.c.

◆ k_exact_one_p

#define k_exact_one_p (   x)    (k_exact_p(x) && f_one_p(x))

Definition at line 233 of file rational.c.

◆ k_exact_p

#define k_exact_p (   x)    (!k_float_p(x))

Definition at line 229 of file rational.c.

◆ k_exact_zero_p

#define k_exact_zero_p (   x)    (k_exact_p(x) && f_zero_p(x))

Definition at line 232 of file rational.c.

◆ k_inexact_p

#define k_inexact_p (   x)    k_float_p(x)

Definition at line 230 of file rational.c.

◆ NDEBUG

#define NDEBUG

Definition at line 17 of file rational.c.

◆ nurat_expt

#define nurat_expt   rb_rational_pow

Definition at line 1077 of file rational.c.

◆ ONE

#define ONE   INT2FIX(1)

Definition at line 26 of file rational.c.

◆ rb_intern

#define rb_intern (   str)    rb_intern_const(str)

◆ TWO

#define TWO   INT2FIX(2)

Definition at line 27 of file rational.c.

◆ ZERO

#define ZERO   INT2FIX(0)

Definition at line 25 of file rational.c.

Function Documentation

◆ Init_Rational()

void Init_Rational ( void  )

Definition at line 2724 of file rational.c.

◆ rb_cstr_to_rat()

VALUE rb_cstr_to_rat ( const char s,
int  strict 
)

Definition at line 2553 of file rational.c.

◆ rb_float_denominator()

VALUE rb_float_denominator ( VALUE  self)

Definition at line 2116 of file rational.c.

References INT2FIX, isinf, isnan, and RFLOAT_VALUE.

◆ rb_float_numerator()

VALUE rb_float_numerator ( VALUE  self)

Definition at line 2093 of file rational.c.

References isinf, isnan, and RFLOAT_VALUE.

◆ rb_flt_rationalize()

VALUE rb_flt_rationalize ( VALUE  flt)

Definition at line 2254 of file rational.c.

References f, and n.

◆ rb_flt_rationalize_with_prec()

VALUE rb_flt_rationalize_with_prec ( VALUE  flt,
VALUE  prec 
)

Definition at line 2238 of file rational.c.

References f_abs.

◆ rb_gcd()

VALUE rb_gcd ( VALUE  self,
VALUE  other 
)

Definition at line 1906 of file rational.c.

Referenced by rb_int_fdiv_double().

◆ rb_gcd_normal()

VALUE rb_gcd_normal ( VALUE  x,
VALUE  y 
)

Definition at line 344 of file rational.c.

◆ rb_gcdlcm()

VALUE rb_gcdlcm ( VALUE  self,
VALUE  other 
)

Definition at line 1944 of file rational.c.

◆ rb_lcm()

VALUE rb_lcm ( VALUE  self,
VALUE  other 
)

Definition at line 1925 of file rational.c.

◆ rb_numeric_quo()

VALUE rb_numeric_quo ( VALUE  x,
VALUE  y 
)

◆ rb_Rational()

VALUE rb_Rational ( VALUE  x,
VALUE  y 
)

Definition at line 1963 of file rational.c.

◆ rb_rational_abs()

VALUE rb_rational_abs ( VALUE  self)

Definition at line 1255 of file rational.c.

References get_dat1, INT_NEGATIVE_P, and rb_int_abs().

◆ rb_rational_canonicalize()

VALUE rb_rational_canonicalize ( VALUE  x)

Definition at line 2046 of file rational.c.

References get_dat1, RB_TYPE_P, and T_RATIONAL.

◆ rb_rational_cmp()

VALUE rb_rational_cmp ( VALUE  self,
VALUE  other 
)

Definition at line 1097 of file rational.c.

References get_dat1, LONG2FIX, rb_int_cmp(), and RB_INTEGER_TYPE_P.

◆ rb_rational_den()

VALUE rb_rational_den ( VALUE  rat)

Definition at line 1978 of file rational.c.

◆ rb_rational_div()

VALUE rb_rational_div ( VALUE  self,
VALUE  other 
)

Definition at line 916 of file rational.c.

References RB_INTEGER_TYPE_P.

Referenced by rb_numeric_quo().

◆ rb_rational_floor()

VALUE rb_rational_floor ( VALUE  self,
int  ndigits 
)

Definition at line 1415 of file rational.c.

◆ rb_rational_minus()

VALUE rb_rational_minus ( VALUE  self,
VALUE  other 
)

Definition at line 778 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_mul()

VALUE rb_rational_mul ( VALUE  self,
VALUE  other 
)

Definition at line 874 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_new()

VALUE rb_rational_new ( VALUE  x,
VALUE  y 
)

Definition at line 1957 of file rational.c.

◆ rb_rational_num()

VALUE rb_rational_num ( VALUE  rat)

Definition at line 1972 of file rational.c.

◆ rb_rational_plus()

VALUE rb_rational_plus ( VALUE  self,
VALUE  other 
)

Definition at line 737 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_pow()

VALUE rb_rational_pow ( VALUE  self,
VALUE  other 
)

Definition at line 1002 of file rational.c.

Referenced by rb_num_pow().

◆ rb_rational_raw()

VALUE rb_rational_raw ( VALUE  x,
VALUE  y 
)

Definition at line 1951 of file rational.c.

◆ rb_rational_reciprocal()

VALUE rb_rational_reciprocal ( VALUE  x)

Definition at line 1887 of file rational.c.

References get_dat1.

◆ rb_rational_uminus()

VALUE rb_rational_uminus ( VALUE  self)

Definition at line 624 of file rational.c.

References assert, get_dat1, RB_TYPE_P, T_RATIONAL, and void.