Pipeline¶
- 
class pyspark.ml.Pipeline(*, stages: Optional[List[PipelineStage]] = None)[source]¶
- A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an - Estimatoror a- Transformer. When- Pipeline.fit()is called, the stages are executed in order. If a stage is an- Estimator, its- Estimator.fit()method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is a- Transformer, its- Transformer.transform()method will be called to produce the dataset for the next stage. The fitted model from a- Pipelineis a- PipelineModel, which consists of fitted models and transformers, corresponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer.- New in version 1.3.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Get pipeline stages. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setParams(self, \*[, stages])- Sets params for Pipeline. - setStages(value)- Set pipeline stages. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → Pipeline[source]¶
- Creates a copy of this instance. - New in version 1.4.0. - Parameters
- extradict, optional
- extra parameters 
 
- Returns
- Pipeline
- new instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.pipeline.PipelineReader[source]¶
- Returns an MLReader instance for this class. - New in version 2.0.0. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setStages(value: List[PipelineStage]) → Pipeline[source]¶
- Set pipeline stages. - New in version 1.3.0. - Parameters
- valuelist
 
- Returns
- Pipeline
- the pipeline instance 
 
 
 - 
write() → pyspark.ml.util.MLWriter[source]¶
- Returns an MLWriter instance for this ML instance. - New in version 2.0.0. 
 - Attributes Documentation - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
stages: pyspark.ml.param.Param[List[PipelineStage]] = Param(parent='undefined', name='stages', doc='a list of pipeline stages')¶
 
-