DefaultParamsReader¶
- 
class pyspark.ml.util.DefaultParamsReader(cls: Type[pyspark.ml.util.DefaultParamsReadable[RL]])[source]¶
- Specialization of - MLReaderfor- Paramstypes- Default - MLReaderimplementation for transformers and estimators that contain basic (json-serializable) params and no data. This will not handle more complex params or types with data (e.g., models with coefficients).- New in version 2.3.0. - Methods - getAndSetParams(instance, metadata[, skipParams])- Extract Params from metadata, and set them in the instance. - isPythonParamsInstance(metadata)- load(path)- Load the ML instance from the input path. - loadMetadata(path, sc[, expectedClassName])- Load metadata saved using - DefaultParamsWriter.saveMetadata()- loadParamsInstance(path, sc)- Load a - Paramsinstance from the given path, and return it.- session(sparkSession)- Sets the Spark Session to use for saving/loading. - Attributes - Returns the underlying SparkContext. - Returns the user-specified Spark Session or the default. - Methods Documentation - 
static getAndSetParams(instance: RL, metadata: Dict[str, Any], skipParams: Optional[List[str]] = None) → None[source]¶
- Extract Params from metadata, and set them in the instance. 
 - 
static loadMetadata(path: str, sc: pyspark.context.SparkContext, expectedClassName: str = '') → Dict[str, Any][source]¶
- Load metadata saved using - DefaultParamsWriter.saveMetadata()- Parameters
- pathstr
- scpyspark.SparkContext
- expectedClassNamestr, optional
- If non empty, this is checked against the loaded metadata. 
 
 
 - 
static loadParamsInstance(path: str, sc: pyspark.context.SparkContext) → RL[source]¶
- Load a - Paramsinstance from the given path, and return it. This assumes the instance inherits from- MLReadable.
 - 
session(sparkSession: pyspark.sql.session.SparkSession) → RW¶
- Sets the Spark Session to use for saving/loading. 
 - Attributes Documentation - 
sc¶
- Returns the underlying SparkContext. 
 - 
sparkSession¶
- Returns the user-specified Spark Session or the default. 
 
- 
static