StandardScalerModel#
- class pyspark.mllib.feature.StandardScalerModel(java_model)[source]#
- Represents a StandardScaler model that can transform vectors. - New in version 1.2.0. - Methods - call(name, *a)- Call method of java_model - setWithMean(withMean)- Setter of the boolean which decides whether it uses mean or not - setWithStd(withStd)- Setter of the boolean which decides whether it uses std or not - transform(vector)- Applies standardization transformation on a vector. - Attributes - Return the column mean values. - Return the column standard deviation values. - Returns if the model centers the data before scaling. - Returns if the model scales the data to unit standard deviation. - Methods Documentation - call(name, *a)#
- Call method of java_model 
 - setWithMean(withMean)[source]#
- Setter of the boolean which decides whether it uses mean or not - New in version 1.4.0. 
 - setWithStd(withStd)[source]#
- Setter of the boolean which decides whether it uses std or not - New in version 1.4.0. 
 - transform(vector)[source]#
- Applies standardization transformation on a vector. - New in version 1.2.0. - Parameters
- vectorpyspark.mllib.linalg.Vectororpyspark.RDD
- Input vector(s) to be standardized. 
 
- vector
- Returns
- pyspark.mllib.linalg.Vectoror- pyspark.RDD
- Standardized vector(s). If the variance of a column is zero, it will return default 0.0 for the column with zero variance. 
 
 - Notes - In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead. 
 - Attributes Documentation - mean#
- Return the column mean values. - New in version 2.0.0. 
 - std#
- Return the column standard deviation values. - New in version 2.0.0. 
 - withMean#
- Returns if the model centers the data before scaling. - New in version 2.0.0. 
 - withStd#
- Returns if the model scales the data to unit standard deviation. - New in version 2.0.0.