MLUtils#
- class pyspark.mllib.util.MLUtils[source]#
- Helper methods to load, save and pre-process data used in MLlib. - New in version 1.0.0. - Methods - appendBias(data)- Returns a new vector with 1.0 (bias) appended to the end of the input vector. - convertMatrixColumnsFromML(dataset, *cols)- Converts matrix columns in an input DataFrame to the - pyspark.mllib.linalg.Matrixtype from the new- pyspark.ml.linalg.Matrixtype under the spark.ml package.- convertMatrixColumnsToML(dataset, *cols)- Converts matrix columns in an input DataFrame from the - pyspark.mllib.linalg.Matrixtype to the new- pyspark.ml.linalg.Matrixtype under the spark.ml package.- convertVectorColumnsFromML(dataset, *cols)- Converts vector columns in an input DataFrame to the - pyspark.mllib.linalg.Vectortype from the new- pyspark.ml.linalg.Vectortype under the spark.ml package.- convertVectorColumnsToML(dataset, *cols)- Converts vector columns in an input DataFrame from the - pyspark.mllib.linalg.Vectortype to the new- pyspark.ml.linalg.Vectortype under the spark.ml package.- loadLabeledPoints(sc, path[, minPartitions])- Load labeled points saved using RDD.saveAsTextFile. - loadLibSVMFile(sc, path[, numFeatures, ...])- Loads labeled data in the LIBSVM format into an RDD of LabeledPoint. - loadVectors(sc, path)- Loads vectors saved using RDD[Vector].saveAsTextFile with the default number of partitions. - saveAsLibSVMFile(data, dir)- Save labeled data in LIBSVM format. - Methods Documentation - static appendBias(data)[source]#
- Returns a new vector with 1.0 (bias) appended to the end of the input vector. - New in version 1.5.0. 
 - static convertMatrixColumnsFromML(dataset, *cols)[source]#
- Converts matrix columns in an input DataFrame to the - pyspark.mllib.linalg.Matrixtype from the new- pyspark.ml.linalg.Matrixtype under the spark.ml package.- New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- *colsstr
- Matrix columns to be converted. - Old matrix columns will be ignored. If unspecified, all new matrix columns will be converted except nested ones. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- the input dataset with new matrix columns converted to the old matrix type 
 
 - Examples - >>> import pyspark >>> from pyspark.ml.linalg import Matrices >>> from pyspark.mllib.util import MLUtils >>> df = spark.createDataFrame( ... [(0, Matrices.sparse(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]), ... Matrices.dense(2, 2, range(4)))], ["id", "x", "y"]) >>> r1 = MLUtils.convertMatrixColumnsFromML(df).first() >>> isinstance(r1.x, pyspark.mllib.linalg.SparseMatrix) True >>> isinstance(r1.y, pyspark.mllib.linalg.DenseMatrix) True >>> r2 = MLUtils.convertMatrixColumnsFromML(df, "x").first() >>> isinstance(r2.x, pyspark.mllib.linalg.SparseMatrix) True >>> isinstance(r2.y, pyspark.ml.linalg.DenseMatrix) True 
 - static convertMatrixColumnsToML(dataset, *cols)[source]#
- Converts matrix columns in an input DataFrame from the - pyspark.mllib.linalg.Matrixtype to the new- pyspark.ml.linalg.Matrixtype under the spark.ml package.- New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- *colsstr
- Matrix columns to be converted. - New matrix columns will be ignored. If unspecified, all old matrix columns will be converted excepted nested ones. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- the input dataset with old matrix columns converted to the new matrix type 
 
 - Examples - >>> import pyspark >>> from pyspark.mllib.linalg import Matrices >>> from pyspark.mllib.util import MLUtils >>> df = spark.createDataFrame( ... [(0, Matrices.sparse(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]), ... Matrices.dense(2, 2, range(4)))], ["id", "x", "y"]) >>> r1 = MLUtils.convertMatrixColumnsToML(df).first() >>> isinstance(r1.x, pyspark.ml.linalg.SparseMatrix) True >>> isinstance(r1.y, pyspark.ml.linalg.DenseMatrix) True >>> r2 = MLUtils.convertMatrixColumnsToML(df, "x").first() >>> isinstance(r2.x, pyspark.ml.linalg.SparseMatrix) True >>> isinstance(r2.y, pyspark.mllib.linalg.DenseMatrix) True 
 - static convertVectorColumnsFromML(dataset, *cols)[source]#
- Converts vector columns in an input DataFrame to the - pyspark.mllib.linalg.Vectortype from the new- pyspark.ml.linalg.Vectortype under the spark.ml package.- New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- *colsstr
- Vector columns to be converted. - Old vector columns will be ignored. If unspecified, all new vector columns will be converted except nested ones. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- the input dataset with new vector columns converted to the old vector type 
 
 - Examples - >>> import pyspark >>> from pyspark.ml.linalg import Vectors >>> from pyspark.mllib.util import MLUtils >>> df = spark.createDataFrame( ... [(0, Vectors.sparse(2, [1], [1.0]), Vectors.dense(2.0, 3.0))], ... ["id", "x", "y"]) >>> r1 = MLUtils.convertVectorColumnsFromML(df).first() >>> isinstance(r1.x, pyspark.mllib.linalg.SparseVector) True >>> isinstance(r1.y, pyspark.mllib.linalg.DenseVector) True >>> r2 = MLUtils.convertVectorColumnsFromML(df, "x").first() >>> isinstance(r2.x, pyspark.mllib.linalg.SparseVector) True >>> isinstance(r2.y, pyspark.ml.linalg.DenseVector) True 
 - static convertVectorColumnsToML(dataset, *cols)[source]#
- Converts vector columns in an input DataFrame from the - pyspark.mllib.linalg.Vectortype to the new- pyspark.ml.linalg.Vectortype under the spark.ml package.- New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- *colsstr
- Vector columns to be converted. - New vector columns will be ignored. If unspecified, all old vector columns will be converted excepted nested ones. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- the input dataset with old vector columns converted to the new vector type 
 
 - Examples - >>> import pyspark >>> from pyspark.mllib.linalg import Vectors >>> from pyspark.mllib.util import MLUtils >>> df = spark.createDataFrame( ... [(0, Vectors.sparse(2, [1], [1.0]), Vectors.dense(2.0, 3.0))], ... ["id", "x", "y"]) >>> r1 = MLUtils.convertVectorColumnsToML(df).first() >>> isinstance(r1.x, pyspark.ml.linalg.SparseVector) True >>> isinstance(r1.y, pyspark.ml.linalg.DenseVector) True >>> r2 = MLUtils.convertVectorColumnsToML(df, "x").first() >>> isinstance(r2.x, pyspark.ml.linalg.SparseVector) True >>> isinstance(r2.y, pyspark.mllib.linalg.DenseVector) True 
 - static loadLabeledPoints(sc, path, minPartitions=None)[source]#
- Load labeled points saved using RDD.saveAsTextFile. - New in version 1.0.0. - Parameters
- scpyspark.SparkContext
- Spark context 
- pathstr
- file or directory path in any Hadoop-supported file system URI 
- minPartitionsint, optional
- min number of partitions 
 
- sc
- Returns
- pyspark.RDD
- labeled data stored as an RDD of LabeledPoint 
 
 - Examples - >>> from tempfile import NamedTemporaryFile >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) >>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect() [LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])] 
 - static loadLibSVMFile(sc, path, numFeatures=- 1, minPartitions=None)[source]#
- Loads labeled data in the LIBSVM format into an RDD of LabeledPoint. The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. Each line represents a labeled sparse feature vector using the following format: - label index1:value1 index2:value2 … - where the indices are one-based and in ascending order. This method parses each line into a LabeledPoint, where the feature indices are converted to zero-based. - New in version 1.0.0. - Parameters
- scpyspark.SparkContext
- Spark context 
- pathstr
- file or directory path in any Hadoop-supported file system URI 
- numFeaturesint, optional
- number of features, which will be determined from the input data if a nonpositive value is given. This is useful when the dataset is already split into multiple files and you want to load them separately, because some features may not present in certain files, which leads to inconsistent feature dimensions. 
- minPartitionsint, optional
- min number of partitions 
 
- sc
- Returns
- pyspark.RDD
- labeled data stored as an RDD of LabeledPoint 
 
 - Examples - >>> from tempfile import NamedTemporaryFile >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> tempFile = NamedTemporaryFile(delete=True) >>> _ = tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\n-1\n-1 2:4.0 4:5.0 6:6.0") >>> tempFile.flush() >>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect() >>> tempFile.close() >>> examples[0] LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0])) >>> examples[1] LabeledPoint(-1.0, (6,[],[])) >>> examples[2] LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0])) 
 - static loadVectors(sc, path)[source]#
- Loads vectors saved using RDD[Vector].saveAsTextFile with the default number of partitions. - New in version 1.5.0. 
 - static saveAsLibSVMFile(data, dir)[source]#
- Save labeled data in LIBSVM format. - New in version 1.0.0. - Parameters
- datapyspark.RDD
- an RDD of LabeledPoint to be saved 
- dirstr
- directory to save the data 
 
- data
 - Examples - >>> from tempfile import NamedTemporaryFile >>> from fileinput import input >>> from pyspark.mllib.regression import LabeledPoint >>> from glob import glob >>> from pyspark.mllib.util import MLUtils >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), ... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0.0 1:1.01 2:2.02 3:3.03\n1.1 1:1.23 3:4.56\n'