MulticlassClassificationEvaluator#
- class pyspark.ml.evaluation.MulticlassClassificationEvaluator(*, predictionCol='prediction', labelCol='label', metricName='f1', weightCol=None, metricLabel=0.0, beta=1.0, probabilityCol='probability', eps=1e-15)[source]#
- Evaluator for Multiclass Classification, which expects input columns: prediction, label, weight (optional) and probabilityCol (only for logLoss). - New in version 1.5.0. - Examples - >>> scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0), ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)] >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"]) >>> evaluator = MulticlassClassificationEvaluator() >>> evaluator.setPredictionCol("prediction") MulticlassClassificationEvaluator... >>> evaluator.evaluate(dataset) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: "truePositiveRateByLabel", ... evaluator.metricLabel: 1.0}) 0.75... >>> evaluator.setMetricName("hammingLoss") MulticlassClassificationEvaluator... >>> evaluator.evaluate(dataset) 0.33... >>> mce_path = temp_path + "/mce" >>> evaluator.save(mce_path) >>> evaluator2 = MulticlassClassificationEvaluator.load(mce_path) >>> str(evaluator2.getPredictionCol()) 'prediction' >>> scoreAndLabelsAndWeight = [(0.0, 0.0, 1.0), (0.0, 1.0, 1.0), (0.0, 0.0, 1.0), ... (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)] >>> dataset = spark.createDataFrame(scoreAndLabelsAndWeight, ["prediction", "label", "weight"]) >>> evaluator = MulticlassClassificationEvaluator(predictionCol="prediction", ... weightCol="weight") >>> evaluator.evaluate(dataset) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) 0.66... >>> predictionAndLabelsWithProbabilities = [ ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]), ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])] >>> dataset = spark.createDataFrame(predictionAndLabelsWithProbabilities, ["prediction", ... "label", "weight", "probability"]) >>> evaluator = MulticlassClassificationEvaluator(predictionCol="prediction", ... probabilityCol="probability") >>> evaluator.setMetricName("logLoss") MulticlassClassificationEvaluator... >>> evaluator.evaluate(dataset) 0.9682... - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - evaluate(dataset[, params])- Evaluates the output with optional parameters. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - getBeta()- Gets the value of beta or its default value. - getEps()- Gets the value of eps or its default value. - Gets the value of labelCol or its default value. - Gets the value of metricLabel or its default value. - Gets the value of metricName or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of probabilityCol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - Indicates whether the metric returned by - evaluate()should be maximized (True, default) or minimized (False).- isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setBeta(value)- Sets the value of - beta.- setEps(value)- Sets the value of - eps.- setLabelCol(value)- Sets the value of - labelCol.- setMetricLabel(value)- Sets the value of - metricLabel.- setMetricName(value)- Sets the value of - metricName.- setParams(self, \*[, predictionCol, ...])- Sets params for multiclass classification evaluator. - setPredictionCol(value)- Sets the value of - predictionCol.- setProbabilityCol(value)- Sets the value of - probabilityCol.- setWeightCol(value)- Sets the value of - weightCol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)#
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - evaluate(dataset, params=None)#
- Evaluates the output with optional parameters. - New in version 1.4.0. - Parameters
- datasetpyspark.sql.DataFrame
- a dataset that contains labels/observations and predictions 
- paramsdict, optional
- an optional param map that overrides embedded params 
 
- dataset
- Returns
- float
- metric 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - getLabelCol()#
- Gets the value of labelCol or its default value. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getPredictionCol()#
- Gets the value of predictionCol or its default value. 
 - getProbabilityCol()#
- Gets the value of probabilityCol or its default value. 
 - getWeightCol()#
- Gets the value of weightCol or its default value. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isLargerBetter()#
- Indicates whether the metric returned by - evaluate()should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.- New in version 1.5.0. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - classmethod read()#
- Returns an MLReader instance for this class. 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setMetricLabel(value)[source]#
- Sets the value of - metricLabel.- New in version 3.0.0. 
 - setMetricName(value)[source]#
- Sets the value of - metricName.- New in version 1.5.0. 
 - setParams(self, \*, predictionCol="prediction", labelCol="label", metricName="f1", weightCol=None, metricLabel=0.0, beta=1.0, probabilityCol="probability", eps=1e-15)[source]#
- Sets params for multiclass classification evaluator. - New in version 1.5.0. 
 - setPredictionCol(value)[source]#
- Sets the value of - predictionCol.
 - setProbabilityCol(value)[source]#
- Sets the value of - probabilityCol.- New in version 3.0.0. 
 - write()#
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - beta = Param(parent='undefined', name='beta', doc='The beta value used in weightedFMeasure|fMeasureByLabel. Must be > 0. The default value is 1.')#
 - eps = Param(parent='undefined', name='eps', doc='log-loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). Must be in range (0, 0.5). The default value is 1e-15.')#
 - labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 - metricLabel = Param(parent='undefined', name='metricLabel', doc='The class whose metric will be computed in truePositiveRateByLabel|falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel. Must be >= 0. The default value is 0.')#
 - metricName = Param(parent='undefined', name='metricName', doc='metric name in evaluation (f1|accuracy|weightedPrecision|weightedRecall|weightedTruePositiveRate| weightedFalsePositiveRate|weightedFMeasure|truePositiveRateByLabel| falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel| logLoss|hammingLoss)')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 - probabilityCol = Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')#
 - weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')#
 - uid#
- A unique id for the object.