Summarizer#
- class pyspark.ml.stat.Summarizer[source]#
- Tools for vectorized statistics on MLlib Vectors. The methods in this package provide various statistics for Vectors contained inside DataFrames. This class lets users pick the statistics they would like to extract for a given column. - New in version 2.4.0. - Examples - >>> from pyspark.ml.stat import Summarizer >>> from pyspark.sql import Row >>> from pyspark.ml.linalg import Vectors >>> summarizer = Summarizer.metrics("mean", "count") >>> df = sc.parallelize([Row(weight=1.0, features=Vectors.dense(1.0, 1.0, 1.0)), ... Row(weight=0.0, features=Vectors.dense(1.0, 2.0, 3.0))]).toDF() >>> df.select(summarizer.summary(df.features, df.weight)).show(truncate=False) +-----------------------------------+ |aggregate_metrics(features, weight)| +-----------------------------------+ |{[1.0,1.0,1.0], 1} | +-----------------------------------+ >>> df.select(summarizer.summary(df.features)).show(truncate=False) +--------------------------------+ |aggregate_metrics(features, 1.0)| +--------------------------------+ |{[1.0,1.5,2.0], 2} | +--------------------------------+ >>> df.select(Summarizer.mean(df.features, df.weight)).show(truncate=False) +--------------+ |mean(features)| +--------------+ |[1.0,1.0,1.0] | +--------------+ >>> df.select(Summarizer.mean(df.features)).show(truncate=False) +--------------+ |mean(features)| +--------------+ |[1.0,1.5,2.0] | +--------------+ - Methods - count(col[, weightCol])- return a column of count summary - max(col[, weightCol])- return a column of max summary - mean(col[, weightCol])- return a column of mean summary - metrics(*metrics)- Given a list of metrics, provides a builder that it turns computes metrics from a column. - min(col[, weightCol])- return a column of min summary - normL1(col[, weightCol])- return a column of normL1 summary - normL2(col[, weightCol])- return a column of normL2 summary - numNonZeros(col[, weightCol])- return a column of numNonZero summary - std(col[, weightCol])- return a column of std summary - sum(col[, weightCol])- return a column of sum summary - variance(col[, weightCol])- return a column of variance summary - Methods Documentation - static metrics(*metrics)[source]#
- Given a list of metrics, provides a builder that it turns computes metrics from a column. - See the documentation of - Summarizerfor an example.- The following metrics are accepted (case sensitive):
- mean: a vector that contains the coefficient-wise mean. 
- sum: a vector that contains the coefficient-wise sum. 
- variance: a vector that contains the coefficient-wise variance. 
- std: a vector that contains the coefficient-wise standard deviation. 
- count: the count of all vectors seen. 
- numNonzeros: a vector with the number of non-zeros for each coefficients 
- max: the maximum for each coefficient. 
- min: the minimum for each coefficient. 
- normL2: the Euclidean norm for each coefficient. 
- normL1: the L1 norm of each coefficient (sum of the absolute values). 
 
 - New in version 2.4.0. - Returns
 - Notes - Currently, the performance of this interface is about 2x~3x slower than using the RDD interface. - Examples - metricsstr
- metrics that can be provided.