MulticlassMetrics#
- class pyspark.mllib.evaluation.MulticlassMetrics(predictionAndLabels)[source]#
- Evaluator for multiclass classification. - New in version 1.4.0. - Parameters
- predictionAndLabelspyspark.RDD
- an RDD of prediction, label, optional weight and optional probability. 
 
- predictionAndLabels
 - Examples - >>> predictionAndLabels = sc.parallelize([(0.0, 0.0), (0.0, 1.0), (0.0, 0.0), ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)]) >>> metrics = MulticlassMetrics(predictionAndLabels) >>> metrics.confusionMatrix().toArray() array([[ 2., 1., 1.], [ 1., 3., 0.], [ 0., 0., 1.]]) >>> metrics.falsePositiveRate(0.0) 0.2... >>> metrics.precision(1.0) 0.75... >>> metrics.recall(2.0) 1.0... >>> metrics.fMeasure(0.0, 2.0) 0.52... >>> metrics.accuracy 0.66... >>> metrics.weightedFalsePositiveRate 0.19... >>> metrics.weightedPrecision 0.68... >>> metrics.weightedRecall 0.66... >>> metrics.weightedFMeasure() 0.66... >>> metrics.weightedFMeasure(2.0) 0.65... >>> predAndLabelsWithOptWeight = sc.parallelize([(0.0, 0.0, 1.0), (0.0, 1.0, 1.0), ... (0.0, 0.0, 1.0), (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)]) >>> metrics = MulticlassMetrics(predAndLabelsWithOptWeight) >>> metrics.confusionMatrix().toArray() array([[ 2., 1., 1.], [ 1., 3., 0.], [ 0., 0., 1.]]) >>> metrics.falsePositiveRate(0.0) 0.2... >>> metrics.precision(1.0) 0.75... >>> metrics.recall(2.0) 1.0... >>> metrics.fMeasure(0.0, 2.0) 0.52... >>> metrics.accuracy 0.66... >>> metrics.weightedFalsePositiveRate 0.19... >>> metrics.weightedPrecision 0.68... >>> metrics.weightedRecall 0.66... >>> metrics.weightedFMeasure() 0.66... >>> metrics.weightedFMeasure(2.0) 0.65... >>> predictionAndLabelsWithProbabilities = sc.parallelize([ ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]), ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])]) >>> metrics = MulticlassMetrics(predictionAndLabelsWithProbabilities) >>> metrics.logLoss() 0.9682... - Methods - call(name, *a)- Call method of java_model - Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in "labels". - fMeasure(label[, beta])- Returns f-measure. - falsePositiveRate(label)- Returns false positive rate for a given label (category). - logLoss([eps])- Returns weighted logLoss. - precision(label)- Returns precision. - recall(label)- Returns recall. - truePositiveRate(label)- Returns true positive rate for a given label (category). - weightedFMeasure([beta])- Returns weighted averaged f-measure. - Attributes - Returns accuracy (equals to the total number of correctly classified instances out of the total number of instances). - Returns weighted false positive rate. - Returns weighted averaged precision. - Returns weighted averaged recall. - Returns weighted true positive rate. - Methods Documentation - call(name, *a)#
- Call method of java_model 
 - confusionMatrix()[source]#
- Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in “labels”. - New in version 1.4.0. 
 - falsePositiveRate(label)[source]#
- Returns false positive rate for a given label (category). - New in version 1.4.0. 
 - truePositiveRate(label)[source]#
- Returns true positive rate for a given label (category). - New in version 1.4.0. 
 - Attributes Documentation - accuracy#
- Returns accuracy (equals to the total number of correctly classified instances out of the total number of instances). - New in version 2.0.0. 
 - weightedFalsePositiveRate#
- Returns weighted false positive rate. - New in version 1.4.0. 
 - weightedPrecision#
- Returns weighted averaged precision. - New in version 1.4.0. 
 - weightedRecall#
- Returns weighted averaged recall. (equals to precision, recall and f-measure) - New in version 1.4.0. 
 - weightedTruePositiveRate#
- Returns weighted true positive rate. (equals to precision, recall and f-measure) - New in version 1.4.0.